

1CRM DEVELOPER GUIDE

A Comprehensive Guide to Developing

Customizations and Extensions for 1CRM

1CRM System 8.6 Developer Guide

Version 8.6, February 2021. This document is subject to change without notice.

Disclaimer

While every effort has been made to ensure the accuracy and completeness of information included in this document, no
guarantee is given, or responsibility taken, by 1CRM Systems Corp. for errors and omissions.

Copyright © 2004-2021 1CRM Systems Corp.
688 Falkland Road, Victoria, British Columbia, Canada V8S 4L5

www.1crm.com

1CRM, Personality Pack, and info@hand are trademarks of 1CRM Systems Corp.

1CRM System 8.6 Developer Guide Page 2

Navigating This Guide:

This Guide has been designed to be helpful both as a printed document, and as an
electronic document accessed on your computer screen. If you are accessing it via
a PDF viewer such as Acrobat Reader or Mac Preview, please notice:

1. The Table of Contents entries are all live hyperlinked to the pages to which
they refer.

2. At the top of each page there is a link back to the start of the Table of
Contents.

3. Be sure to use the search feature of your PDF reader.

Table of Contents

1.0 Welcome 5..
1.1 About this Guide 5 ..

1.2 Who Should Read this Guide? 6 ..

1.3 Additional Documentation 6 ...

2.0 Integration with Web Services 7...
2.1 Compatibility APIs 7 ...

2.2 Next Generation REST API 7 ...
2.2.1 General 9 ...
2.2.2 API Client Library for PHP 22 ..
2.2.3 Types 23 ..
2.2.4 Authentication 31 ...
2.2.5 Working with data 35 ...
2.2.6 Tally Objects 44 ...
2.2.7 Working with calendars 45 ..
2.2.8 Working with metadata 46 ...
2.2.9 Working with files 54 ...
2.2.10 Webhooks 58 ..
2.2.11 Portal 68 ..
2.2.12 Utility 69 ...
2.2.13 Print PDF 70 ..
2.2.14 Audit 71 ...
2.2.15 Reports 73 ...
2.2.16 Working with list and detail layouts 76 ..

2.3 Integration using Workflow Actions 77 ...

3.0 SugarCRM Compatibility 80...
4.0 1CRM Module Development 81..
4.1 Introduction 81 ...

4.2 Configuration Files 81 ..

4.3 Module Directory Structure 83 ...

4.4 Model Descriptors 85 ...
4.4.1 Business Logic Hooks 87 ..
4.4.2 Field Descriptors 90 ..
4.4.3 System-Level Field Descriptors 92 ..
4.4.4 Common Field Types 92 ...
4.4.5 Table Indexes 94 ...
4.4.6 Model Links and Relationships 94 ...

4.5 Localization 96 ...

4.6 Model Display Descriptors 97 ..
4.6.1 ListView Filter Definitions 99 ...
4.6.2 Display Hooks 100 ..

4.7 Layout Descriptors 101 ..

4.8 Display Widgets 104 ..

5.0 Extending System Modules 106...
5.1 The ext/ subdirectory 106 ...

Table of Contents Page 3

Table of Contents

5.1.1 System Language Extensions 106 ..
5.1.2 Model and Display Extensions 107 ...
5.1.3 Module Layout Extensions 108 ...
5.1.4 Extending the Administration Module 109 ...

6.0 Debugging Methods 111...
6.1 Application Settings 111 ...

6.2 Utility Functions 112 ...

Appendix A - Standard Icons 113...
Appendix B - High-Level Design 116...

Table of Contents Page 4

1CRM System 8.6 Developer Guide

1.0 Welcome
Thank you for using 1CRM! Release 8.6 of the 1CRM Customer Relationship and Business
Management (CRBM) System is designed to further energise your organisation’s efforts to efficiently
organise and maintain information that is crucial to many aspects of your business. 1CRM enables
organizations to do business, better.

The 1CRM system is available in four Editions:

• Startup Edition: Free for use On Premise. Request a license key and download link, and you
can install Startup Edition on your own server at no charge. It offers all the features of 1CRM
Professional Edition, but is limited to 3 Users, 300 Accounts, 750 Leads, 750 Contacts, and
750 Targets. Although it only offers Community support, and no updates, the Startup Edition
is a great way for an early stage business to get itself organized and productive while
operating on a shoestring budget!

• Startup+ Edition: Similar to the Startup Edition, but for somewhat larger firms, with capacity
limits of 10 users, 600 Accounts, 1,500 Contacts, 1,500 Leads and 1,500 Targets. Unlike the
Startup Edition, this is a commercial product, available on the 1CRM Cloud or for On
Premise software installation.

• Professional Edition: Formerly known as info@hand, 1CRM Professional is our mainstream
small business CRM product offering, available on the 1CRM Cloud or for On Premise
software installation.

• Enterprise Edition: Our premium product. It offers all the features of 1CRM Professional
Edition, plus a number of additional features of particular interest to larger, more
sophisticated businesses. Administrators can use the Module Designer and PDF Form
Designer to create more advanced customizations. Price Books let you establish pricing for
multiple client levels. The iOS client provides optimized system access from an iPhone. And
Advanced Reporting offers more sophisticated reporting capabilities.

Unlike most CRM solutions, 1CRM offers comprehensive Order Management. It includes a Product
Catalog, plus the ability to create Quotations, Sales Orders and Invoices using products from the
Catalog. Incoming Payments may be received and allocated against invoices, and the system can
produce PDF documents for Quotes, Sales Orders, Invoices, Receipts, and Statements. Purchase
Orders may also be created, and Outgoing Payments recorded against them.

1CRM also offers extensive features for Project Management, Service Management, and general
office administration (including Expense Reports, Timesheets, Vacation scheduling and tracking, and
HR).

Most importantly, the 1CRM system seamlessly blends all of these capabilities into an intuitive and
friendly interface. The instructions in this guide will introduce you to the most important CRM
concepts and help you get familiar with using your 1CRM system.

1.1 About this Guide
This guide is written for those individuals tasked with adapting the 1CRM system for specialized
uses. It is current with the details of operation for 1CRM 8.6. It is designed to explain methods for
customization of the 1CRM system, maintaining compatibility with future upgrades to the base
product as much as possible.

Section 1: Welcome Page 5

1CRM System 8.6 Developer Guide

Readers are expected to be proficient in software development in a web-based environment,
including a working knowledge of Apache, PHP and MySQL. For user interface enhancements,
capability in JavaScript and CSS may be necessary.

1.2 Who Should Read this Guide?
This 1CRM Developer Guide is intended for IT personnel and contractors who are developing
custom extensions for the 1CRM system. It is also meant for project managers who need to estimate
the scope and duration of development work.

It is not intended for conventional users who wish to record and track company activities and
outcomes, or for system administrators looking to install and optimize the 1CRM system – those
topics are dealt with in the 1CRM User Guide and Implementation Guide.

1.3 Additional Documentation
The 1CRM Customer Relationship and Business Management (CRBM) system offers extensive
documentation for the installation and use of its various components. Click on any link below to
download that document, or click here to see all our 1CRM documentation:

• User Guide

• Mobile User Guide

• Implementation Guide

• Developer Guide

Section 1: Welcome Page 6

https://1crm.com/documentation/
https://1crm.com/documentation/1crm-8-6-user-guide/
https://1crm.com/documentation/1crm-8-6-mobile-user-guide/
https://1crm.com/documentation/1crm-8-6-implementation-guide/
https://1crm.com/documentation/1crm-8-6-developer-guide/

1CRM System 8.6 Developer Guide

2.0 Integration with Web
Services

2.1 Compatibility APIs
A number of our clients have been interested to use a variety of SugarCRM add-on products from
third-party vendors, since the 1CRM core CRM was originally built (starting in 2004) on a base of
SugarCRM Open Source.

One of the key issues is the use of third party software that was designed to link with SugarCRM
using SOAP or REST web services interfaces. The current revision of 1CRM includes very little
residual software from the SugarCRM Open Source project. However, it has been engineered to be
closely compatible to the SOAP and REST APIs of SugarCRM CE release 6.4. Note that the
methods available (and reported in the generated WSDL file) will depend on the entry point used:
soap.php for the evolving, native SOAP API, and service/v[#]/soap.php for specific SugarCRM API
versions. Note: The API will be deprecated soon, and removed from the 1CRM codebase.

When a third party software uses a SOAP or REST call to 1CRM to ask for the version of SugarCRM
software, 1CRM replies with this version info (6.4) by default. If you wish for some reason to change
this answer, you may do so, by overriding the soap.public_version setting in your local_config.php
file. This ability to override the reported SugarCRM version can be useful to maintain compatibility
with software such as Outlook and ThunderBird plugins that support SugarCRM Community Edition
via a SOAP connection.

If a third-party module integrates with SugarCRM 6.4 solely by means of the SOAP or REST API,
then there is a very good chance it will also work just fine with 1CRM, although there are some
changes to the database structure of base modules which can lead to incompatibilities.

If you want to write your own software which accesses 1CRM via the SugarCRM SOAP API, you
should follow the SugarCRM documentation found here. But if you have any choice, we do not
recommend it. Use the vastly more capable Next Generation REST API described below.

2.2 Next Generation REST API
Beginning with System 8, 1CRM offers an all-new REST API. It may be accessed at /api.php from
your URL root. You can also view and navigate the API documentation there if you browse to that
URL, as shown below.

Note: While this Developer Guide API content is updated regularly, the live API documentation at
/api.php from your URL root should always be used as the definitive reference information.

Note: This API is used by the 1CRM Mobile iPhone app. By default your 1CRM system is configured
only to allow the app to communicate with it securely, via SSL using a URL beginning with https://.
All 1CRM Cloud installations have an SSL certificate installed by default, so you can simply enter
your URL as you normally would, but with https:// at the front (which you may or may not normally
do in your browser anyway). If your 1CRM On Premise instance does not have an SSL certificate,
you can allow non-SSL use of the API by going to the Admin - API and OAuth Settings screen, and
turn on the option Allow API Calls via insecure connections (http://).

Section 2: Integration with Web Services Page 7

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.7/02_Application_Framework/Web_Services/

1CRM System 8.6 Developer Guide

Section 2: Integration with Web Services Page 8

1CRM System 8.6 Developer Guide

2.2.1 General
1CRM provides an API (Application Programming Interface) for integrating with third-party
applications such as accounting, ERP, e-commerce, self-service portals and others. With the 1CRM
API, you can extract data in JSON format and develop new applications or integrate with existing
applications.

Connecting to the 1CRM API
1CRM API calls are performed as HTTP requests to /1crm/api.php, with endpoint appended to
it. Note that endpoints listed in this documentation do not include the base URI /1crm/api.php.
For example, if the documentation says that to retrieve accounts list, one would send an HTTP GET
request to /data/Account, actual request should be made to /1crm/api.php/data/Account.

Call parameters can be passed to API in various ways:

• in endpoint path. Such parameters are listed in this documentation with a colon prepended, for
example /data/:model

• in query string, for example /data/Account?limit=10. Array and object parameters can be
specified using square brackets: 
/data/Account?object[a][b]=1 
/data/Account?array[]=1&array[]=2

• in request body of POST and PUT requests, formatted as JSON object

• in HTTP headers. Note that actual header name is derived from param name by replacing

underscores with hyphens. Header name is case insensitive. For example, CONTENT_TYPE
header parameter should be passed in Content-Type HTTP header

Most API responses are formatted as JSON objects. A successful call result is indicated with 200
OK HTTP status code. Any response with status code different from 200 indicates an error, with
detailed error information available in response body.

REST API is only available in Pro and Enterprise editions of 1CRM. Any attempt to make an API call
to Startup or Startup+ edition will result in 403 Forbidden status code.

Note that the 1CRM API by default will reject any calls made over a non-SSL connection (http://).
These connections may be enabled by an option in Admin - System Settings.

HTTP Method override
1CRM API uses different HTTP methods in API calls. Some client applications may only be able to
perform HTTP requests using a limited number of HTTP methods. Also, 1CRM application server
may be behind an HTTP proxy that does not accept HTTP methods other than GET and POST. To
use 1CRM API in such situations, one can send POST requests instead of PUT, PATCH and
DELETE, and add X-HTTP-Method-Override header.

POST	/api.php/Account/123	HTTP/1.1	

Host:	1crm.ca	

X-HTTP-Method-Override:	DELETE

Section 2: Integration with Web Services Page 9

1CRM System 8.6 Developer Guide

HTTP status codes
200 OK 
Requested action was executed. Response body may contain the requested data.

400 Bad request 
Returned if required parameters are missing, or parameters do not match expected data type.
Response body contains additional information

401 Unauthorized 
Returned when client is not authenticated.

403 Forbidden 
Returned when:

• client is not authorized to access requested resource according to 1CRM ACLs

• an API call is made to Startup or Startup+ edition

404 Not found 
Returned when requested endpoint does not exist, or when requested record does not exist.

500 Internal error 
Returned when an internal server error occurred. Response body may contain additional information

Endpoints may define additional response codes – see endpoint documentation for details.

Language
Some endpoints, especially metadata-related, may return data that is locale-dependent. To specify
preferred language, use Accept-Language HTTP header. If that header is missing, default locale is
used as configured in 1CRM settings. Note that even if Accept-Language header is present,
formatting may be applied to some data according to authenticated user's locale preferences.

Legend

 Authentication required

 Request methods

 Required parameter

 Parameter is located in endpoint path

 Parameter is located in query string

 Parameter is located in request body

 Parameter is located in HTTP header

[1:] [:20] [1:100] numeric values limits, or limits for number of elements in arrays or string length

{String} Type constraint for values in an object

(123) default value

Section 2: Integration with Web Services Page 10

1CRM System 8.6 Developer Guide

Extending 1CRM API
This article describes how developers of 1CRM extension modules can extend the API. Let’s
suppose that you created a custom module named Echo.

Registering an API group

Each endpoint in the 1CRM API belongs to a group. Grouping does not affect the API functionality,
but it is useful for API documentation formatting. We start by creating a file named modules/Echo/
ext/config/standard/api_config.php:

Registering endpoints

Next step is to register an endpoint.

This new config file section adds an endpoint to myutils group. The endpoint will be defined in
EchoEndpoint class, located in modules/Echo/API.php file.

Endpoint class

Endpoint class must extend OneCRM\API\Endpoint:

Required methods

First, we need to define several required methods:

groups	
				myutils	
								title:	"My	Utils"	
								docs:	"Miscellanous	useful	utilities"

groups	
				myutils	
								title:	My	Utils	
								docs:	"Miscellanous	useful	utilities"	
endpoints	
				--	
								file:	modules/Echo/API.php	
								class:	EchoEndpoint	
								group:	myutils

<?php	
use	OneCRM\API\Endpoint;	
class	EchoEndpoint	extends	Endpoint	{	
}

Section 2: Integration with Web Services Page 11

1CRM System 8.6 Developer Guide

This endpoint uses /ext/echo path. Each endpoint can support multiple HTTP request methods
(GET,POST, PUT, etc.), so we have to return all method it supports from allowedMethods(). In this
case, the only supported HTTP method is POST.

Authentication scope required by this endpoint is read. You may also specify write and profile
if needed.

isAuthEndpoint() should always return false.

Endpoint descriptor

descriptor() method must return endpoint descriptor describing endpoint parameters and
returned value. In our case, it will return a descriptor only for HTTP POST method, because that is
the only one supported.

We start with a minimal descriptor containing only a title and documentation. Notice that here we
reference documentation placed into a separate file — modules/Echo/docs/docs.md.

<?php	

use	OneCRM\API\Endpoint;	

class	EchoEndpoint	extends	Endpoint	{	

				public	function	allowedMethods()	{	
								return	['post'];	
				}	

				public	function	isAuthEndpoint()	{	
								return	false;	
				}	

				public	function	requiredScopes($method)	{	
								return	['read'];	
				}	

				public	function	descriptor($method)	{	
								if	($method	==	'post')	
												return	$this->descriptorPost();	
				}	

				public	function	endpoint()	{	
								return	'/ext/echo';	
				}	

}

Section 2: Integration with Web Services Page 12

1CRM System 8.6 Developer Guide

Parameters

An endpoint can accept a number of parameters that can be passed when making an API call.

<?php	

use	OneCRM\API\Endpoint;	

class	EchoEndpoint	extends	Endpoint	{	
				//	skipped	

				private	function	descriptorPost()	{	
								return	[
												'title'	=>	'Echo',	
												'docs'	=>	'@+modules/Echo/docs/
docs',	//	docs	in	a	.md	file,	notice	that	extension	is	omited	
];	
				}	
}

<?php	

use	OneCRM\API\Endpoint;	

class	EchoEndpoint	extends	Endpoint	{	
				//	skipped	
				private	function	descriptorPost()	{	
								return	[
												'title'	=>	'Echo',	
												'docs'	=>	'@+modules/Echo/docs/
docs',	//	docs	in	a	.md	file,	notice	that	extension	is	omited	
												'params'	=>	[
																'data'	=>	[
																				'location'	=>	'body',	
																				'type'	=>	'Object',	
																				'docs'	=>	'Data	to	echo',	
																				'required'	=>	true,	
],	
																'format'	=>	[
																				'location'	=>	'query',	
																				'type'	=>	'Enum',	
																				'options'	=>	['json',	'xml'],	
																				'docs'	=>	'Output	format',	
																				'required'	=>	false,	
],	
],	
												'return'	=>	[
																''	=>	[
																				'type'	=>	'String',	
																				'docs'	=>	'Data	echoed	back',	
																				'required'	=>	true,	
],	
],	
];	
				}	
}

Section 2: Integration with Web Services Page 13

1CRM System 8.6 Developer Guide

Here we declared a required parameter data which must be passed in request body, and an
optional parameter format which can be passed in query string. These parameters will be checked
when serving API calls, and an error will be returned if passed parameters do not match the
specification.

You can also describe the data returned by the endpoint, but this serves for documentation
purposes only.

HTTP handler

Now it is time to create a method that will process requests and return responses. The method
name must match the corresponding HTTP method.

This is just an example, normally you want to always use withJSON().

1CRM API uses the Slim framework. Refer to its documentation to learn how to work with Request
and Response objects.

<?php	

use	OneCRM\API\Endpoint;	

class	EchoEndpoint	extends	Endpoint	{	
				//	skipped	
				protected	function	post($input,	$res,	$req)	{	

								if	($input['format']	!=	'xml')	
												return	$res->withJSON($input['data']);	

								$body	=	$res->getBody();	
								$body->rewind();	

								$xml	=	new	SimpleXMLElement('<echo/>');	
								$body->write($this->arrayToXML($input['data'],	$xml,	'element'));	

								return	$res->withHeader('Content-type',	'text/xml;	charset=UTF-8')-
>withBody($body);	
				}	

				public	function	arrayToXML($array,	SimpleXMLElement	$xml,	$child_name)	
				{	
								foreach	($array	as	$k	=>	$v)	{	
												if(is_array($v))	{	
																(is_int($k))	?	$this->arrayToXML($v,	$xml-
>addChild($child_name),	$v)	:	$this->arrayToXML($v,	$xml-
>addChild(strtolower($k)),	$child_name);	
												}	else	{	
																(is_int($k))	?	$xml->addChild($child_name,	$v)	:	$xml-
>addChild(strtolower($k),	$v);	
												}	
								}	

								return	$xml->asXML();	
				}	

}

Section 2: Integration with Web Services Page 14

https://www.slimframework.com/

1CRM System 8.6 Developer Guide

Returning errors

If during a request processing an error occurs, you can throw one of BadRequest,
InternalError, NotFound from OneCRM\API\Errors namespace.

<?php	

use	OneCRM\API\Endpoint;	
use	OneCRM\API\Errors;	

class	EchoEndpoint	extends	Endpoint	{	
				//	skipped	
				protected	function	post($input,	$res,	$req)	{	

								if	(!empty($input['data']['prohibited']))		
												throw	new	Errors\BadRequest("prohibited	parameter	passed");	
								if	($input['format']	!=	'xml')	
												return	$res->withJSON($input['data']);	

								$body	=	$res->getBody();	
								$body->rewind();	

								$xml	=	new	SimpleXMLElement('<echo/>');	
								$body->write($this->arrayToXML($input['data'],	$xml,	'element'));	

								return	$res->withHeader('Content-type',	'text/xml;	charset=UTF-8')-
>withBody($body);	
				}	
				//	skipped	
}

Section 2: Integration with Web Services Page 15

1CRM System 8.6 Developer Guide

Client libraries
Although most programming languages provide tools for making HTTP requests, using a dedicated
API client library can make a developer’s life easier, to ensure applications follow best practices
when using the API, and to make any code using the API more robust.

Currently, 1CRM provides API client library for PHP. Client libraries for other programming languages
are under development.

PHP
The 1CRM API Client library for PHP may be found here and its documentation is here.

Authentication
The vast majority of 1CRM API calls require authentication. Upon successful authentication, further
API calls respect access rules defined by 1CRM administrator. This includes access to certain
modules, access to records belonging to other users, permissions to edit and/or delete records, etc.
Basically, any restrictions that apply to a user using 1CRM web UI, also apply to api calls when API
client is authenticated on behalf of that user.

The 1CRM REST API supports 2 authentication mechanisms: Basic authentication and OAuth 2
authentication. OAuth 2 authentication should be preferred if possible.

Basic authentication
HTTP basic authentication is the simplest authentication method accepted by 1CRM API.
Authentication is performed by adding Authorization header to all requests. No special
authentication request is required.

To perform basic authentication, application should perform the following steps:

1. Make MD5 hash of password, for example supersecret becomes
9a618248b64db62d15b300a07b00580b

2. Concatenate user name and password hash with a colon:
admin:9a618248b64db62d15b300a07b00580b

3. Encode concatenated string as Base64 :
YWRtaW46OWE2MTgyNDhiNjRkYjYyZDE1YjMwMGEwN2IwMDU4MGI=

4. Add Authorization header to the HTTP request: Authorization: Basic
YWRtaW46OWE2MTgyNDhiNjRkYjYyZDE1YjMwMGEwN2IwMDU4MGI=

While Basic authentication is very simple to use, you should always prefer OAuth 2.0. Note
that in the 1CRM Implementation Guide, we highly recommend disabling Basic
Authentication, and most administrators should do so.

Section 2: Integration with Web Services Page 16

https://github.com/1CRM/1crm-api-client-php
http://1crm.github.io/1crm-api-client-php/index.html

1CRM System 8.6 Developer Guide

OAuth 2 authentication
1CRM API utilizes the industry-standard OAuth 2.0 protocol. You should always prefer OAuth to
Basic authentication.

To use OAuth 2.0 authentication, you first need to obtain a token. After that, you should add
Authorization header to HTTP requests when calling endpoints that require authentication :
Authorization: Bearer access_token. Replace access_token with actual access token.

Application registration

In order to make calls to the 1CRM API using OAuth 2.0, you need to register an application, or API
client. Registered clients are assigned a unique Client ID (client_id) and a unique Client Secret
(client_secret). Make sure to store the Client Secret securely.

1CRM supports 2 types of API clients: public and private.

Private API clients can be registered by 1CRM administrator, and are intended for use by your
organization only. Public API clients are managed by 1CRM Systems Corp., and represent 3rd party
applications. If you are developing an application that can be potentially useful for all 1CRM
customers, you should apply for a public API client.

Client ID and Client Secret for private clients are available from 1CRM admin interface. For public
clients, 1CRM will provide Client ID and Client Secret after creating your API Client.

Resource owners

One of the roles defined by OAuth 2.0 Authorization Framework is Resource Owner:

An entity capable of granting access to a protected resource. When the resource owner is a
person, it is referred to as an end-user.

Naturally, in 1CRM, its users are resource owners. API client can be granted access on behalf of a
1CRM user. But there are many cases, when it is also desirable to allow Contacts to authenticate
themselves: using 1CRM as single sign-on server, customer portals, etc.

1CRM defines two types of Resource Owners: User and Contact. Depending on type of resource
owner you want to authenticate, you use different endpoints. Note that Contact access token only
provides access to Contact's own information such as name, email address and telephone number.

Scopes

When requesting access to protected resources, API client can specify the scope of request. 1CRM
supports 3 scopes:

• read client requests access to read information from 1CRM

• write client requests access to write information to 1CRM

• profile client requests access to Resource Owner's account information

For Resource Owner of Contact type, only profile scope is allowed. read and write scopes are
subject to limitations set by 1CRM administrator using 1CRM ACL system.

If you do not specify a scope in authorization request, profile will be used by default.

Section 2: Integration with Web Services Page 17

1CRM System 8.6 Developer Guide

Authentication workflow

1CRM allows you to use OAuth 2.0 via one of five flows:

• Authorization Code Grant - use this flow if you want to authorize a web application.

• Implicit Grant - use this flow if you want to authorize a user-agent, a desktop or a mobile

application.

• Resource Owner Password Credentials Grant - use this flow if you want to authenticate

directly via 1CRM API using resource owner’s password credentials.

• Client Credentials Grant - use this flow to authorize an application on behalf of predefined

1CRM user. The actual user that gains access in this flow is decided by 1CRM
administrator.

• Refresh Token Grant - use this flow to renew an access token when the current one expires.

Authorization Code grant

Authorization Code grant is most suitable for web server applications or native mobile applications.
The flow should be very familiar if you have ever signed into a web app using your Facebook or
Google account.

Step one

The client will redirect the user's web browser to /auth/user/authorize or /auth/contact/
authorize with the following parameters in the query string:

• response_type with the value code

• client_id with the client identifier

• redirect_uri with the client redirect URI. This parameter is optional, and defaults to first

URI from the list configured by 1CRM administrator. If specified, this parameter must match
one of redirect URIs configured by 1CRM administrator.

• state optional CSRF token. This parameter is optional but highly recommended. You
should store the value of the CSRF token in the user’s session to be validated when they
return to your application

The user will be asked to login and approve the client. If the user approves the client, they will be
redirected to redirect URI, with the following parameters in the query string:

• code authorization code

• state state parameter sent in the original request. You should compare this value with the

value stored in the user’s session to ensure the authorization code obtained is in response
to requests made by this client rather than another client application.

Step two

The client now sends a POST request to /auth/user/access_token or /auth/contact/
access_token with the following parameters in request body:

• grant_type with the value of authorization_code

• client_id with the client identifier

• scope a space delimited list of scopes

• client_secret with the client secret

Section 2: Integration with Web Services Page 18

1CRM System 8.6 Developer Guide

• redirect_uri with the same redirect URI the user was redirect back to

• code with the authorization code from the query string

Instead of specifying client_id and client_secret in request body, you can send HTTP Basic
Authorization header, using the client ID as username and client secret as password.

The server will respond with a JSON object containing the following properties:

• token_type with the value Bearer

• expires_in with an integer representing the TTL of the access token

• access_token access token - a JWT signed with the server’s private key

• refresh_token an encrypted payload that can be used to refresh the access token when

it expires.

Access token can be now used to make calls to protected endpoints.

Implicit Grant

The implicit grant is similar to the authorization code grant with two distinct differences.

It is intended to be used for user-agent-based clients (e.g. single page web apps) that can’t keep a
client secret because all of the application code and storage is easily accessible.

Secondly instead of the authorization server returning an authorization code which is exchanged for
an access token, the authorization server returns an access token.

Flow

The client will redirect the user's web browser to /auth/user/authorize or /auth/contact/
authorize with the following parameters in the query string:

• response_type with the value token

• client_id with the client identifier

• scope a space delimited list of scopes

• redirect_uri with the client redirect URI. This parameter is optional, and defaults to first

URI from the list configured by 1CRM administrator. If specified, this parameter must match
one of redirect URIs configured by 1CRM administrator.

• state optional CSRF token. This parameter is optional but highly recommended. You
should store the value of the CSRF token in the user’s session to be validated when they
return to your application

The user will be asked to login and approve the client. If the user approves the client, they will be
redirected to redirect URI, with the following parameters in the query string:

• token_type with the value Bearer

• expires_in with an integer representing the TTL of the access token

• access_token access token - a JWT signed with the authorization server’s private key

• state with the state parameter sent in the original request. You should compare this value

with the value stored in the user’s session to ensure the authorization code obtained is in
response to requests made by this client rather than another client application.

Section 2: Integration with Web Services Page 19

1CRM System 8.6 Developer Guide

Note: This grant does not return refresh token.

Resource Owner Password Credentials Grant

This grant provides great user experience for web applications and native mobile applications,
because it does not require the user to be redirected to 1CRM for password entry. This grant is only
available for private clients.

Flow

The client will send a a POST request to /auth/user/access_token or /auth/contact/
access_token with the following parameters in request body:

• grant_type with the value of password

• client_id with the client identifier

• scope a space delimited list of scopes

• client_secret with the client secret

• username

• password

Instead of specifying client_id and client_secret in request body, you can send HTTP Basic
Authorization header, using the client ID as username and client secret as password.

The server will respond with a JSON object containing the following properties:

• token_type with the value Bearer

• expires_in with an integer representing the TTL of the access token

• access_token access token - a JWT signed with the server’s private key

• refresh_token an encrypted payload that can be used to refresh the access token when

it expires.

Access token can be now used to make calls to protected endpoints.

Client Credentials Grant

To enable this grant, 1CRM administrator assigns a user to API client using 1CRM admin interface.
After obtaining access token, API client can make requests to the API on behalf of that user. This
grant is only available for Resource Owner of User type.

Flow

The client will send a a POST request to /auth/user/access_token or with the following
parameters in request body:

• grant_type with the value of client_credentials

• client_id with the client identifier

• scope a space delimited list of scopes

• client_secret with the client secret

Instead of specifying client_id and client_secret in request body, you can send HTTP Basic
Authorization header, using the client ID as username and client secret as password.

Section 2: Integration with Web Services Page 20

1CRM System 8.6 Developer Guide

The server will respond with a JSON object containing the following properties:

• token_type with the value Bearer

• expires_in with an integer representing the TTL of the access token

• access_token access token - a JWT signed with the server’s private key

Access token can be now used to make calls to protected endpoints.

Refresh Token Grant

Access tokens eventually expire; however some grants respond with a refresh token which enables
the client to refresh the access token.

Flow

The client will send a a POST request to /auth/user/access_token or /auth/contact/
access_token with the following parameters in request body:

• grant_type with the value of refresh_token

• refresh_token with the refresh token

• client_id with the client identifier

• scope a space delimited list of scopes

• client_secret with the client secret

Instead of specifying client_id and client_secret in request body, you can send HTTP Basic
Authorization header, using the client ID as username and client secret as password.

The server will respond with a JSON object containing the following properties:

• token_type with the value Bearer

• expires_in with an integer representing the TTL of the access token

• access_token access token - a JWT signed with the server’s private key

• refresh_token an encrypted payload that can be used to refresh the access token when

it expires.

Session authentication
Session authentication is an authentication method for embedded 1CRM applications.
Authentication is performed by adding the Session ID from browser cookies to HTTP requests
when calling endpoints that require authentication. The request would be automatically
authenticated using the credentials from the current 1CRM session with all user's ACL rights.

Note that Session Authentication is disabled by default.  

Section 2: Integration with Web Services Page 21

1CRM System 8.6 Developer Guide

2.2.2 API Client Library for PHP
An API Client library, sometimes called a helper library, is a set of code that application developers
can add to their development projects. It provides chunks of code that do the basic things an
application needs to do in order to interact with an API - in this case the 1CRM REST API. Client
libraries are provided to make a developer’s life easier, to ensure applications follow best practices
when using the API, and to make any code using the API more robust.

1CRM has created an open source API Client library for PHP which may be found here on github.

Documentation for the API Client library is here.

 

Section 2: Integration with Web Services Page 22

https://github.com/1CRM/1crm-api-client-php
http://1crm.github.io/1crm-api-client-php/index.html

1CRM System 8.6 Developer Guide

2.2.3 Types

Bool
This type represents a boolean value. Strings yes, 1 and true are recognized as true, and no, 0
and false are recognized as false. When sending parameters of this type in request body, prefer
using JSON values of true or false instead of strings.

Int
This type represents an integer value. Parameters of this type can have limits set for minimum and
maximum accepted values

String
This type represents a generic string value. Parameters of this type can have limits set for minimum
and maximum accepted string length and/or regular expression that the string should match

Enum
This type represents a string that can only take one of predefined values

Float
This type represents a floating point numeric value. Parameters of this type can have limits set for
minimum and maximum accepted values

Array
This type represents an array of values. Parameters of this type can be either a generic array without
a predefined element type, or a typed array that should have only values of specific type as array
elements

Object
This type represents a data structure known in different programming languages as associative
array, map, symbol table, or dictionary. Object keys are always strings. Parameters of this type can
have schema to specify accepted keys and value types for those keys

Date
Inherits String

This type represents a date value. The value must conform to Y-m-d format as used by PHP date
function

DateTime
Inherits String

This type represents a date/time value. The value must conform to Y-m-d H:i:s format as used
by PHP date function. Use GMT timezone.

Section 2: Integration with Web Services Page 23

http://php.net/manual/ru/function.date.php
http://php.net/manual/ru/function.date.php
http://php.net/manual/ru/function.date.php

1CRM System 8.6 Developer Guide

Filename
Inherits String

This type represents a file name. The value should not contain any path information.

OneOf
This is a polymorphic type that can be one of several predefined types.

WebhookFilter

Inherits Object

This type represents a webhook filter.

Schema

Name Type Description

glue Enum {or, and}

conditions Array Depends

↳[n] OneOf (StringFilter,
DateFilter,
DateTimeFilter,
EnumFilter,
NumberFilter,
BoolFilter)

Section 2: Integration with Web Services Page 24

1CRM System 8.6 Developer Guide

StringFilter

Inherits Object

This type represents a webhook filter by a string field.

filter can be one of the following:

• eq field value is equal to value

• not_eq field value is not equal to value

• prefix field value starts with value

• suffix field value ends with value

• like field value contains value

• not_like field value does not contain value

• empty field value is empty

• not_empty field value is not empty

Schema

Name Type Description

field String Name of the field this filter applies to

filter Enum {eq, not_eq,
prefix, suffix, like,
not_like, empty,
not_empty}

Filter operator

value String Operand

when WebhookWhen Type of change

Section 2: Integration with Web Services Page 25

1CRM System 8.6 Developer Guide

NumberFilter

Inherits Object

This type represents a webhook filter by a numeric field.

filter can be one of the following:

• lt field value is less than value

• gt field value is greater than value

• lte field value is less than or equal to value

• gte field value is grater than or equal to value

• between field value is between value and value2, inclusive

• empty field value is not set

• not_empty field value is set

• eq field value is equal to value

• not_eq field value is not equal to value

Schema

Name Type Description

field String Name of the field this filter applies to

filter Enum {lt, gt, lte, gte,
between, empty,
not_empty, eq, not_eq}

Filter operator

value Float Operand

value2 Float Second operand

when WebhookWhen Type of change

Section 2: Integration with Web Services Page 26

1CRM System 8.6 Developer Guide

DatetimeFilter

Inherits Object

This type represents a webhook filter by a date or datetime field.

filter can be one of the following:

• not_empty field value is not empty

• empty field value is empty

• before_date field value is before the date passed in value

• after_date field value is after the date passed in value

• on_date field value equals the date passed in value

• not_on_date field value does not equal the date passed in value

• yesterday field value is yesterday's date

• today field value is today's date

• tomorrow field value is tomorrow's date

• between_dates field value is between dates passed in value and value2, inclusive

You can also pass period_prev, period_current, or period_next in filter. In this case
filed value will be checked against previous, current, or next period relative to current date. Period
length is determined by value:

• day one day

• week calendar week

• month calendar month

• quarter calendar quarter

• year calendar year

• fiscal_quarter fiscal quarter

• fiscal_year fiscal year

• days_N N days

Schema

Name Type Description

field String Name of the field this filter applies to

filter Enum {not_empty, empty,
before_date, after_date, on_date,
not_on_date, yesterday, today,
tomorrow, period_prev,
period_current, period_next,
between_dates}

Filter operator

value OneOf (Date, DateTime) Operand

value2 OneOf (Date, DateTime) Second operand

when WebhookWhen Type of change

Section 2: Integration with Web Services Page 27

1CRM System 8.6 Developer Guide

EnumFilter

Inherits Object

This type represents a webhook filter by a enum or multienum field.

filter can be one of the following:

• eq field value equals value; pass a string for enum field or an array of strings for multienum

field

• not_eq field value not equals value; pass a string for enum field or an array of strings for

multienum field

• any_of for enum fields, field value is contained in value array; for multienum fields, field

value contains at least one element from array passed in value

• not_any_of for enum fields, field value is not contained in value array; for multienum

fields, field value does not contain any of the elements from array passed in value

• all_of all elements passed in value array are contained in field value; applicable to

multienum fields only

• empty field value is empty

• not_empty field value is not empty

Schema

Name Type Description

field String Name of the field this filter applies to

filter Enum {eq, not_eq, any_of,
not_any_of, all_of, empty,
not_empty}

Filter operator

value OneOf (String, Array {String}) Operand. When filtering on enum
fields, pass a string. For multienum
fields, pass an array of strings

when WebhookWhen Type of change

Section 2: Integration with Web Services Page 28

1CRM System 8.6 Developer Guide

BoolFilter

Inherits Object

This type represents a webhook filter by a boolean field.

Schema

Name Type Description

field String Name of the field this filter applies to

filter Enum {is_true, is_false} Filter operator

when WebhookWhen Type of change

Section 2: Integration with Web Services Page 29

1CRM System 8.6 Developer Guide

WebhookWhen

Inherits Enum {changed, not_changed, changed_to, current_value, prev_value}

This type represents the type of change webhook filter reacts to.

• changed Field value was changed. Actual previous and new values are not important

• not_changed Field value was not changed.

• changed_to Field was changed to a value that matches the criteria defined by filter's

operator

• current_value Field's current value matches the criteria defined by filter's operator,

regardless of whether it was changed or not.

• prev_value Field was changed, and its previous value matches the criteria defined by

filter's operator

TestComplex

Inherits Object

This type exists solely for testing purposes. Do not use.

Schema

Name Type Description

x String

y Int

z TestComplex

q DateTime

Section 2: Integration with Web Services Page 30

1CRM System 8.6 Developer Guide

2.2.4 Authentication

Authorization request for contact

See OAuth 2.0

 /auth/contact/authorize

Parameters

Name Type Description

response_type Enum {code, token} Expected response type

client_id String API client identifier

redirect_uri String This parameter is optional, if not specified, the user
will be redirected to a pre-registered redirect URI

scope String A space delimited list of scopes

state String CSRF token. This parameter is optional but highly
recommended. You should store the value of the
CSRF token in the user’s session to be validated
when they return

Section 2: Integration with Web Services Page 31

https://demo.1crmcloud.com/api.php?page=oauth

1CRM System 8.6 Developer Guide

Authorization request for user

See OAuth 2.0

 /auth/user/authorize

Parameters

Name Type Description

response_type Enum {code, token} Expected response type

client_id String API client identifier

redirect_uri String This parameter is optional, if not specified, the user
will be redirected to a pre-registered redirect URI

scope String A space delimited list of scopes

state String CSRF token. This parameter is optional but highly
recommended. You should store the value of the
CSRF token in the user’s session to be validated
when they return

Section 2: Integration with Web Services Page 32

https://demo.1crmcloud.com/api.php?page=oauth

1CRM System 8.6 Developer Guide

Authorization grant for contact

See OAuth 2.0

 /auth/contact/access_token

Parameters

Name Type Description

grant_type Enum {client_credent
ials, password,
authorization_code,
refresh_token}

Grant type

client_id String API client identifier

client_secret String API client secret

refresh_token String Refresh token

redirect_uri String This parameter is optional, if not specified, the user
will be redirected to a pre-registered redirect URI

code String Authorization code

Return

Name Type Description

token_type String Access token type. Always Bearer

expires_in Int An integer representing the TTL of the access token

access_token String A JWT signed with the authorization server’s private key

refresh_token String An encrypted payload that can be used to refresh the access
token when it expires

state String State parameter sent in the original request. You should compare
this value with the value stored in the user’s session to ensure
the authorization code obtained is in response to requests made
by this client rather than another client application

Section 2: Integration with Web Services Page 33

https://demo.1crmcloud.com/api.php?page=oauth

1CRM System 8.6 Developer Guide

Authorization grant for user

See OAuth 2.0

 /auth/user/access_token

Parameters

Name Type Description

grant_type Enum {client_credent
ials, password,
authorization_code,
refresh_token}

Grant type

client_id String API client identifier

client_secret String API client secret

refresh_token String Refresh token

redirect_uri String This parameter is optional, if not specified, the user
will be redirected to a pre-registered redirect URI

code String Authorization code

Return

Name Type Description

token_type String Access token type. Always Bearer

expires_in Int An integer representing the TTL of the access token

access_token String A JWT signed with the authorization server’s private key

refresh_token String An encrypted payload that can be used to refresh the access
token when it expires

state String State parameter sent in the original request. You should compare
this value with the value stored in the user’s session to ensure
the authorization code obtained is in response to requests made
by this client rather than another client application

Section 2: Integration with Web Services Page 34

https://demo.1crmcloud.com/api.php?page=oauth

1CRM System 8.6 Developer Guide

2.2.5 Working with data

Add or remove a record from user’s favorites

 /data/favorites/{model}/{id}

Parameters

Name Type Description

model String [1:] Model

id String [1:] Record ID

Return

Name Type Description

status Int New favorite status. 0 if added, 1 if removed

Section 2: Integration with Web Services Page 35

1CRM System 8.6 Developer Guide

Get list of records

Retrieve list of records belonging to specified model

Returned objects do not have a predefined structure, it depends on model and requested fields.
See Metadata

 /data/{model}

Parameters

Name Type Description

model String [1:] Model to query

fields Array Array of field names to fetch. When omitted, a limited
number of fields are returned, depending on model.
Record ID is guaranteed to be returned, and for most
models, name and/or _display fields.

↳[n] String

query_favorite Bool Query favorites. If set, favorite field will be added to
each result row, indicating whether the current user
added the item to Favorites. Note that item is in
favorites if and only if the value of favorite field is
zero

filter_text String Generic search string. Fields involved in search depend
on model

filters Object {String} Filters to apply. To get list of available filters for a model,
use metadata

order String Sort order

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit in account

Section 2: Integration with Web Services Page 36

1CRM System 8.6 Developer Guide

Create records

Create a record of specified model

 /data/{model}

Parameters

Name Type Description

model String [1:] Model to query

data Object An object with keys matching field names to update. Fields not
defined in this object are not modified

Return

Name Type Description

id String ID of created record

Section 2: Integration with Web Services Page 37

1CRM System 8.6 Developer Guide

Get single record

Retrieve single record belonging to specified model, identified by id

Returned object does not have a predefined structure, it depends on model and requested fields.
See Metadata

 /data/{model}/{id}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Record ID

fields Array Array of field names to fetch. When omitted, all available fields are
returned.

↳[n] String

Return

Name Type Description

record Object Retrieved record

Section 2: Integration with Web Services Page 38

1CRM System 8.6 Developer Guide

Update a record

Update record belonging to specified model, identified by id

Delete a record

Delete record belonging to specified model, identified by id

 /data/{model}/{id}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Record ID

data Object An object with keys matching field names to update. Fields not
defined in this object are not modified

Return

Name Type Description

result Bool Always true

 /data/{model}/{id}

Parameters

Name Type Description

model String [1:] Model

id String [1:] Record ID

Return

Name Type Description

result Bool True if deleted successfully

Section 2: Integration with Web Services Page 39

1CRM System 8.6 Developer Guide

Get list of related records

Retrieve list of related records belonging to specified model and id via specific link

Returned objects do not have a predefined structure, it depends on model and requested fields.
See Metadata

 /data/{model}/{id}/{link}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Record ID

link String [1:] Link name

fields Array Array of field names to fetch. When omitted, a limited number
of fields are returned, depending on model. Record ID is
guaranteed to be returned, and for most models, name and/
or _display fields.

↳[n] String

filter_text String Generic search string. Fields involved in search depend on
model

filters Object {String} Filters to apply. To get list of available filters for a model, use
metadata

order String Sort order

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit in account

Section 2: Integration with Web Services Page 40

1CRM System 8.6 Developer Guide

Add related records

Add list of related records belonging to specified model and id via specific link.

You can specify related records in 2 ways:

1. Pass an array of related IDs in records parameter. This is suitable for most links, where

you just want to set relationship between records, without specifying additional link data.
Example: linking Contact to Account.

2. Pass an array of objects with additional data to be inserted into join table in
records_with_data parameter. For example, when adding a product to assembly, you
want to specify the quantity of products in the assembly. Imagine you want to add 5
products with ID 3d3e96d1-8d7c-acd6-e338-55b9b0cc5aae to assembly with ID
5121670a-9ddb-8330-195d-5979fc9a6906. Then you POST to /data/Assembly/
5121670a-9ddb-8330-195d-5979fc9a6906/products, and pass the following JSON
in request body:

 /data/{model}/{id}/{link}

{	

			"records_with_data":	[
							{	
											"id":	"3d3e96d1-8d7c-acd6-e338-55b9b0cc5aae",	
											"quantity"	:	5	
							}	
]	
}

Parameters

Name Type Description

model String [1:] Parent Model

id String [1:] Parent ID

link String [1:] Link name

records Array Array of related record IDs to be added to specified
link.

↳[n] String

records_with_data Array Array of objects, each representing additional data to
be inserted into join table

↳[n]
 Object

Section 2: Integration with Web Services Page 41

1CRM System 8.6 Developer Guide

Remove relationship between records

Get list of all related records

Retrieve list of related records belonging to specified model via specific link

Returned objects do not have a predefined structure, it depends on model and requested fields.
See Metadata

 /data/{model}/{id}/{link}/{rel_id}

Parameters

Name Type Description

model String [1:] Parent Model

id String [1:] Parent record ID

link String [1:] Link name

rel_id String [1:] Related record ID

Return

Name Type Description

Result Bool True if deleted successfully

 /data/link/{model}/linked-records/{link}

Parameters

Name Type Description

model String [1:] Model to query

link String [1:] Link name

fields Array Array of field names to fetch. When omitted, a limited number
of fields are returned, depending on model. Record ID is
guaranteed to be returned, and for most models, name and/
or _display fields.

↳[n] String

Section 2: Integration with Web Services Page 42

1CRM System 8.6 Developer Guide

Erase Personal Data

Erase Personal Data for specified model identified by id

order String Sort order

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Parameters

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit in account

 /data/erase_personal/{model}/{id}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Record ID

data Object An object with fields property with the comma separated
fields string for erase. Fields not added to this string are not
erased.

Return

Name Type Description

Result Bool Always true

Section 2: Integration with Web Services Page 43

1CRM System 8.6 Developer Guide

2.2.6 Tally Objects
1CRM includes a set of modules that have a common property: each record from those modules
contains a list of related line items. This includes records that represent financial transactions
(Quotes, Invoices, Bills etc.) and the moving of goods (Shipping, Receiving). Records from such
modules are collectively referred to as Tally Objects. 1CRM API provides a set of endpoints for
working with such objects that allow developers to treat the Tally objects as a whole, not as
separate parent record (for example, invoice) and a set of line items.

Get a Tally Object

 /tally/{model}/{id}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Record ID

Return

Name Type Description

record Object Parent record as if it was retrieved using /data/{model}/
{id} endpoint

groups Array Array of groups, each group contains one or more line items

Section 2: Integration with Web Services Page 44

1CRM System 8.6 Developer Guide

2.2.7 Working with calendars

Get list of events

Retrieve list of events within specified dates range. Returned records are grouped by type, and
within each type records are sorted by date. No more than 200 records of each type are returned.

 /calendar/events

Parameters

Name Type Description

start_date DateTime Lower date bound

end_date DateTime Upper date bound

types Array When present, this parameter limits returned events
to specified types

↳[n] Enum {Call,
Meeting, Task,
ProjectTask}

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

↳[id] String Record ID

↳[start_date] DateTime Event start date/time

↳[due_date] DateTime Event due date/time

↳[name] String Event name

↳[type] Enum {Call,
Meeting, Task,
ProjectTask}

Event type

↳[location] String Event location, if applicable

Section 2: Integration with Web Services Page 45

1CRM System 8.6 Developer Guide

2.2.8 Working with metadata

Get fields definition for a model

Get locale-related information

Retrieve information about how 1CRM is configured to format numbers, addresses and currency
values.

Date and time formats are as defined in the documentation of PHP date() function.

Name format can contain s, f and l placeholders, for salutation, first name and last name,
respectively.

Address format can contain placeholders. A placeholder consists of a letter between curly braces:

• {s} for street address

• {c} for city

• {t} for state

• {o} for country

• {p} for postal code

• {a} for company name

• {n} for contact name

• {d} for department

• {h} for phone

• {f} for fax

 /meta/fields/{model}

Parameters

Name Type Description

model String [1:] Model to query

Return

Name Type Description

fields Array An array with fields definitions

filters Array An array with filters definitions

 /meta/locale

Section 2: Integration with Web Services Page 46

1CRM System 8.6 Developer Guide

| (pipe symbol) denotes a space, [] (a space in square bracket) is for new line.

Return

Name Type Description

date_format String Date format

time_format String Time format

address_format Object Address format

↳[display] String Address format descriptive name

↳[format] String Address format

number_format Object Number format

↳[display] String Number format descriptive name

↳[dec_sep] String Deciamal part separator

↳[grp_sep] String Groups separator

base_currency Object Base currency

↳[name] String Currency name

↳[iso4217] String Currency code according to ISO 4217

↳[symbol] String Currency symbol

↳[significant_digits] Int Number of symbols after decimal point

↳[symbol_place_after] Bool true if symbol must be placed after amount in
monetary values, false if the symbol goes before
amount

↳[space_separate] Bool true if a space is required between numeric value
and currency symbol

Section 2: Integration with Web Services Page 47

1CRM System 8.6 Developer Guide

Get list of available modules

Get list of available modules (models).

 /meta/modules

Return

Name Type Description

list Array List of modules

↳[n] Object

 ↳[module] String Module name

 ↳[primary_model] String Module’s primary model

 ↳[models] Array Models

 ↳[n] String Model name

Section 2: Integration with Web Services Page 48

1CRM System 8.6 Developer Guide

Get ListView metadata for a model

Retrieve ListView metadata belonging to specified model

 /meta/list_view/{model}

Parameters

Name Type Description

model String [1:] Model to query

layout String Get metadata for this layout

Return

Name Type Description

current_layout Array An array with current ListView layout (tab) params

layouts Array Array of all ListView layouts for the module

↳[n] Object

settings Object An array with Listview layout settings

hooks Array An array with ListView hooks

columns Array Array of ListView columns

↳[n] Object

filters Array Array of filters for the current layout

↳[n] Object

hidden fields Array Array of hidden fields

↳[n] Object

mass_update Array Mass Update details - buttons and fields

↳[n] Object

 ↳[buttons] Array ListView mass update buttons (actions)

 ↳[fields] Array Mass update form fields

Section 2: Integration with Web Services Page 49

1CRM System 8.6 Developer Guide

Get Sub Panels metadata for a model

Retrieve Sub Panels metadata belonging to specified model and detail_layout

 /meta/sub_panels/{model}/{detail_layout}

Parameters

Name Type Description

model String [1:] Model to query

detail_layout String [1:] DetailView layout tab

Return

Name Type Description

panels Array A list of SubPanels with metadata

↳[n] Object

 ↳[name] String SubPanel name

 ↳[module] String SubPanel module

 ↳[bean_name] String SubPanel model name

 ↳[model_type] String SubPanel model type

 ↳[managed] Bool

 ↳[removeable] Bool

 ↳[updateable] Bool

 ↳[no_create] Bool Hide Create button if true

 ↳[icon] String Custom icon

 ↳[detail_link_url] String Custom DetailView URL

 ↳[detail_link_action] String Custom DetailView Action

 ↳[layout] String SubPanel layout name

 ↳[layout_type] String SubPanel layout type

 ↳[title] String Title lang constant

Section 2: Integration with Web Services Page 50

1CRM System 8.6 Developer Guide

 ↳[target_key] Bool Target Key

 ↳[source_key] Bool Source Key

 ↳[custom_buttons] Array An array with SubPanel custom buttons

 ↳[columns] Array An array with SubPanel columns

Return

Section 2: Integration with Web Services Page 51

1CRM System 8.6 Developer Guide

Get DetailView metadata for a model

Retrieve DetailView metadata belonging to specified model and layout

 /meta/detail_view/{model}/{layout}

Parameters

Name Type Description

model String [1:] Model to query

layout String [1:] Selected DetailView layout

Return

Name Type Description

title String Form title

current_layout Array An array with current DetailView layout (tab) params

layouts Array An Array of all DetailView layouts(tabs) for the
module

↳[n] Object

buttons Array An Array of custom module DetailView buttons

↳[n] Object

scripts Array An array of custom scripts which should be included

form_hooks Array An array of custom form hooks

↳[n] Object

summary Object Summary part of the detail page

sections Array An array of detail page sections

↳[n] Object

Section 2: Integration with Web Services Page 52

1CRM System 8.6 Developer Guide

Get generic module metadata

Generic module metadata - default list, detail, popup layouts

 /meta/generic_module_layouts/{module}

Parameters

Name Type Description

module String [1:] Module

Return

Name Type Description

list Array Default ListView layout and view

popup Array Default Popup layout and view

detail Array Default DetailView layout and view

Section 2: Integration with Web Services Page 53

1CRM System 8.6 Developer Guide

2.2.9 Working with files

Upload a small file

Upload a file. Uploaded file will be saved to a temporary location. Returned file ID can be used as a
value for fields having file_ref or image type when creating or updating records.

This endpoint is suitable for uploading relatively small files, such as contact or user photos. Request
body length should not exceed 1048576 bytes.

Note that uploaded files will be kept on server for a limited amount of time if not linked in file_ref
or image field after upload.

 /files/upload/base64

Parameters

Name Type Description

model String [1:] File name. Should not contain any path information

mimetype String [1:] File MIME type

data String File data, base64 encoded

Return

Name Type Description

id String Uploaded file ID

Section 2: Integration with Web Services Page 54

1CRM System 8.6 Developer Guide

Upload a file

Upload a file. Uploaded file will be saved to a temporary location. Returned file ID can be used as a
value for fields having file_ref or image type when creating or updating records.

This endpoint is suitable for uploading larger files, compared to /files/upload/base64. File size
limit depends on maximum post size defined in PHP configuration.

Note that uploaded files will be kept on server for a limited amount of time if not linked in file_ref
or image field after upload.

 /files/upload

Parameters

Name Type Description

CONTENT_TYPE String (application/octet-stream) File content type

CONTENT_LENGTH Int [0:] File size

X_ONECRM_FILENAME Filename [1:] File name

Return

Name Type Description

id String Uploaded file ID

Section 2: Integration with Web Services Page 55

1CRM System 8.6 Developer Guide

Download a file

Download a file.

This endpoint is for downloading 1CRM Documents, Note attachments and temporary uploaded
files (see /files/upload/base64).

File source is identified with model and id parameters:

	 •	 When model equals to Document, latest document revision will be downloaded. id is the

Document ID

	 •	 When model equals to DocumentRevision, specific document revision will be

downloaded. id is the Document Revision ID

	 •	 When model equals to Notes, note attachment will be downloaded, id is Note ID

	 •	 When model equals to upload, contents of temporary uploaded file will be downloaded.

id is the ID returned from upload endpoint

On success, the response body contains raw file data. Additional information may be returned in
Content-Type, Content-Length, Content-Disposition, and X-OneCRM-Filename
response headers.

On failure, HTTP response code different from 200 will be returned, and response body contains
additional information in JSON format.

 /files/download/{model}/{id}

Parameters

Name Type Description

model Enum Specifies model

id String [1:] Specifies ID

Section 2: Integration with Web Services Page 56

1CRM System 8.6 Developer Guide

Get information about a file

Get information about a file.

This endpoint is for Retrieving metadata for 1CRM Documents, 	Note attachments and temporary
uploaded files (see /files/upload/base64).

See /files/download/:model/:id for description of model and id parameters.

 /files/info/{model}/{id}

Parameters

Name Type Description

model Enum Specifies model

id String [1:] Specifies ID

Return

Name Type Description

name String File name

mimetype String File MIME type

modified Int File modification time, in secons since UNIX
epoch

size Int File size in bytes

temp_url String Temporary download URL

Section 2: Integration with Web Services Page 57

1CRM System 8.6 Developer Guide

2.2.10 Webhooks

A Webhook is an HTTP callback: an HTTP POST that occurs when something happens; a simple
event-notification via HTTP POST.

In 1CRM, 3 types of webhooks are available create, update and create_update. Webhook type
determines the event that triggers the notification. create webhooks are triggered when a new
record is created. update webhooks are triggered when an existing record is updated.
create_update webhooks are triggered for both new records and updated records.

When a webhook is triggered, a HTTP POST request is sent to specified URL. Content-Type header
is set to application/json, and a JSON object is passed in request body. The object contains the
values of record's fields after the update.

When a record is updated, first all webhooks with corresponding type and model are selected. Then
each webhook is examined for the user that created it. If the user has no read access to the
updated record, the webhook will be excluded from further examination. Next, for each webhook,
each filter from filters is examined:

• if glue is and, and all conditions from filters are satisfied, the webhook triggers

• if glue is or, and at least one condition from filters is satisfied, the webhook triggers

Here are some examples of webhook filters construction. For these examples, the Contact model
is used.

Basic filter structure
Webhook filter consists of 2 elements: conditions and glue. Conditions are an array of
conditions to check, and glue tells how the conditions are to be combined.

glue can be either and or or. If glue is and, and all conditions are satisfied, the webhook triggers.
If glue is or, and at least one condition is satisfied, the webhook triggers.

Basic filter structure:

This simple filter triggers the webhook if after update first_name equals to "John". Note that in
this case glue can be either or or and - it does not matter when there is only one condition.

Combining multiple conditions

{
 glue: "or", // "or", "and"
 conditions: [
 {
 field: "first_name",
 filter: "eq",
 value: "John",
 when: "current_value"
 }
]
}

Section 2: Integration with Web Services Page 58

1CRM System 8.6 Developer Guide

In previous example, the webhook would trigger if contact's first name is "John". Now imagine you
want to trigger a webhook for every update to a contact whose first name is John, but only if their
last name was changed to Smith. In this case the filter will look like this:

You can add as many conditions as you need:

Choosing values to check
As you must have noticed, we used different values for when in the conditions. This field tells which
value you want to check: the old value (before the update) or the new value (after the update).

Let's see how to use different when values.

{
 glue: "and",
 conditions: [
 {
 field: "first_name",
 filter: "eq",
 value: "John",
 when: "current_value"
 },
 {
 field: "last_name",
 filter: "eq",
 value: "Smith",
 when: "changed_to"
 }
]
}

{
 glue: "or",
 conditions: [
 {
 field: "last_name",
 filter: "eq",
 value: "Smith",
 when: "changed_to"
 },
 {
 field: "last_name",
 filter: "eq",
 value: "Johnson",
 when: "changed_to"
 },
 {
 field: "last_name",
 filter: "eq",
 value: "Black",
 when: "changed_to"
 }
]
}

Section 2: Integration with Web Services Page 59

1CRM System 8.6 Developer Guide

With this filter, the webhook will trigger when last name changed to “Smith".

With this filter, the webhook will trigger when last name changed to anything other than "Smith".
Note - if the name was not equal to "Smith" and it was not changed - the condition is not satisfied!

With this filter, the webhook will trigger when last name after the update is not equal to "Smith". It
does not matter if the last name was updated or not - the value after the update is tested.

{
 glue: "or",
 conditions: [
 {
 field: "last_name",
 filter: "eq",
 value: "Smith",
 when: "changed_to"
 },
]
}

{
 glue: "or",
 conditions: [
 {
 field: "last_name",
 filter: "ne",
 value: "Smith",
 when: "changed_to"
 },
]
}

{
 glue: "or",
 conditions: [
 {
 field: "last_name",
 filter: "ne",
 value: "Smith",
 when: "current_value"
 },
]
}

{
 glue: "or",
 conditions: [
 {
 field: "last_name",
 filter: "eq",
 value: "Smith",
 when: "previous_value"
 },
]
}

Section 2: Integration with Web Services Page 60

1CRM System 8.6 Developer Guide

With this filter, the webhook will trigger when last name was changed, and after the update it is
equal to “Smith".

With this filter, the webhook will trigger when last name was changed. The actual new value does
not matter, and the condition does not need filter and value.

With this filter, the webhook will trigger when last name was not changed. This condition does not
need filter and value.

Operators
All conditions except changed and not_changed need an operator, passed in filter. Applicable
operators depend on field type.

See NumberFilter, DatetimeFilter, EnumFilter, BoolFilterr, StringFilter for operators available for
different field types.

Nested filters
As you can see, pretty sophisticated filters can be constructed. But there are cases when simply
combining multiple conditions with and or or is not enough. In such cases, nested filters can be
used. Let's continue with our Contact examples. Imagine you need a webhook triggered after
contact's name is changed to either "John Smith" or "Jack Brown". In this case you construct your
filter as follows:

{
 glue: "or",
 conditions: [
 {
 field: "last_name",
 when: "changed"
 },
]
}

{
 glue: "or",
 conditions: [
 {
 field: "last_name",
 when: "not_changed"
 },
]
}

Section 2: Integration with Web Services Page 61

https://portaldemo.1crmcloud.com/1crm/api.php/?#type_NumberFilter
https://portaldemo.1crmcloud.com/1crm/api.php/?#type_DatetimeFilter
https://portaldemo.1crmcloud.com/1crm/api.php/?#type_EnumFilter
https://portaldemo.1crmcloud.com/1crm/api.php/?#type_BoolFilter
https://portaldemo.1crmcloud.com/1crm/api.php/?#type_StringFilter

1CRM System 8.6 Developer Guide

{
 glue: "and",
 conditions: [
 {
 glue: "or",
 conditions: [
 {
 field: "last_name",
 when: "changed"
 },
 {
 field: "first_name",
 when: "changed"
 }
]
 },
 {
 glue: "or",
 conditions: [
 {
 glue: "and",
 conditions: [
 {
 field: "last_name",
 when: "current_value",
 filter: "eq",
 value: "Smith"
 },
 {
 field: "first_name",
 when: "current_value",
 filter: "eq",
 value: "John"
 }
]
 },
 {
 glue: "and",
 conditions: [
 {
 field: "last_name",
 when: "current_value",
 filter: "eq",
 value: "Brown"
 },
 {
 field: "first_name",
 when: "current_value",
 filter: "eq",
 value: "Jack"
 }
]
 }
]
 },
]
}

Section 2: Integration with Web Services Page 62

1CRM System 8.6 Developer Guide

Get List of webhooks

Get List of webhooks.

 /webhooks

Parameters

Name Type Description

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

total_results Int Total number of results, without taking offset
and limit in account

records Array Webhook ID

↳[n] Object

 ↳[id] String Webhook ID

 ↳[type] String Webhook type

 ↳[url] String Webhook URL

 ↳[model] String Model that triggers this webhook

 ↳[filters] WebhookFilter Model-specific filters

 ↳[assigned_user_id] String User assigned to the webhook

Section 2: Integration with Web Services Page 63

1CRM System 8.6 Developer Guide

Create a webhook

 /webhooks

Parameters

Name Type Description

type Enum {create, update,
create_update}

Webhook type

url String [1:] Webhook URL

model String [1:] Model that triggers this webhook

filters WebhookFilter Describes filters to trigger webhook on specific
events only

Return

Name Type Description

id String Webhook ID

type String Webhook type

url String Webhook URL

model String Model that triggers this webhook

filters WebhookFilter Model-specific filters

Section 2: Integration with Web Services Page 64

1CRM System 8.6 Developer Guide

Delete a webhook

Delete webhook identified by id.

 /webhooks/{id}

Parameters

Name Type Description

id String [1:] Webhook ID

Return

Name Type Description

id String Webhook ID

type String Webhook type

url String Webhook URL

model String Model that triggers this webhook

Section 2: Integration with Web Services Page 65

1CRM System 8.6 Developer Guide

Get a webhook

Get data for webhook identified by id.

 /webhooks/{id}

Parameters

Name Type Description

id String [1:] Webhook ID

Return

Name Type Description

id String Webhook ID

type String Webhook type

url String Webhook URL

model String Model that triggers this webhook

filters WebhookFilter Model-specific filters

Section 2: Integration with Web Services Page 66

1CRM System 8.6 Developer Guide

Update a webhook

 /webhooks/{id}

Parameters

Name Type Description

id String [1:] Webhook ID

type Enum {create, update,
create_update}

Webhook type

url String [1:] Webhook URL

model String [1:] Model that triggers this webhook

filters WebhookFilter Describes filters to trigger webhook on specific
events only

Return

Name Type Description

id String Webhook ID

type String Webhook type

url String Webhook URL

model String Model that triggers this webhook

filters WebhookFilter Model-specific filters

Section 2: Integration with Web Services Page 67

1CRM System 8.6 Developer Guide

2.2.11 Portal

Create access token for portal user

! This endpoint is not available when Basic authentication is used.

! Access to this endpoint is enabled for admin users only.

Create a new access token to be used for portal access. Returned access token allows access to a
limited subset of data that is relevant for certain contact only.

 /portal/auth

Parameters

Name Type Description

contact_id String [1:] Contact ID

Section 2: Integration with Web Services Page 68

1CRM System 8.6 Developer Guide

2.2.12 Utility

Get information about authenticated user

Returns 1CRM version. Can be used to validate login info

Get server public key

Returns 1CRM version. Can be used to validate login info

 /me

Return

Name Type Description

version String 1CRM version

products Array List if licensed products

↳[n] String

authenticated Bool True if the request contains valid authentication header

 /public_key

Return

Name Type Description

key String Contents of server public key

Section 2: Integration with Web Services Page 69

1CRM System 8.6 Developer Guide

Get 1CRM version

Returns 1CRM version. Can be used to validate login info

2.2.13 Print PDF

Print PDF

Print Personal Data PDF

 /version

Return

Name Type Description

version String 1CRM version

products Array List if licensed products

↳[n] String

authenticated Bool True if the request contains valid authentication header

 /printer/pdf/{model}/{id}

Parameters

Name Type Description

Model String [1:] Record model

id String [1:] Record ID

 /printer/pdf/personal/{model}/{id}

Parameters

Name Type Description

Model String [1:] Record model

id String [1:] Record ID

Section 2: Integration with Web Services Page 70

1CRM System 8.6 Developer Guide

2.2.14 Audit

Get list of audit logs

Retrieve list of audit logs belonging to specified model

 /audit/{model}

Parameters

Name Type Description

model String [1:] Model to query

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit

Section 2: Integration with Web Services Page 71

1CRM System 8.6 Developer Guide

Get parent record audit logs

Retrieve list of audit logs belonging to specified model, identified by parent record id

 /audit/{model}/{id}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Parent record ID (audited record ID)

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit

Section 2: Integration with Web Services Page 72

1CRM System 8.6 Developer Guide

2.2.15 Reports

Get list of reports

Retrieve list of reports belonging to specified model

 /reports/{model}

Parameters

Name Type Description

model String [1:] Model to query

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit

Section 2: Integration with Web Services Page 73

1CRM System 8.6 Developer Guide

Get list of archived runs

Retrieve list of archived runs belonging to specified model, identified by report id

 /reports/{model}/{id}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Report ID

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit

Section 2: Integration with Web Services Page 74

1CRM System 8.6 Developer Guide

Get report data

Retrieve archived runs report data belonging to specified model, identified by run id

 /reports/data/{model}/{id}

Parameters

Name Type Description

model String [1:] Model to query

id String [1:] Run ID

offset Int [0:] (0) Offset in the list to start retrieval from

limit Int [1:200] (20) Limits number of records returned

Return

Name Type Description

records Array Array of retrieved records

↳[n] Object

total_results Int Total number of results, without taking offset and limit

Section 2: Integration with Web Services Page 75

1CRM System 8.6 Developer Guide

2.2.16 Working with list and detail layouts

Set ListView layout(tab) params for a model

Set ListView layout(tab) params belong to specified model

 /layouts/list_view/{model}

Parameters

Name Type Description

model String [1:] Model

layout String [1:] New selected ListView layout(tab)

filter_layout String [1:] Filters form layout

filter_values Array Array of list filters values

offset Int [0:] (0) ListView offset value

limit Int [1:200] (20) ListView limit - number of records returned

order_by String Sort order

Return

Name Type Description

return

Section 2: Integration with Web Services Page 76

1CRM System 8.6 Developer Guide

2.3 Integration using Workflow Actions
You can see an overview of how the Workflow capability in 1CRM works, in the Implementation
Guide section 7.5.5. Fundamentally it allows 1CRM to automatically perform certain actions when
various conditions are met. The range of actions includes:

As seen below, the Call Remote API action supports options for GET, POST, and POST with JSON
body. When the action is performed 1CRM will link out to whatever URL is specified.

You will find a POST is useful for linking out to Zapier - the formdata type payload is accepted quite
easily in Zapier. The POST with JSON body option is useful for linking to Microsoft Flow, for example.

When this workflow action is executed, it sends a request to the external URL specified. The request
always contains the following fields:

module - the module that triggered the workflow
record - ID of the record that was modified
user - ID of user who triggered the workflow
source - always workflow

Section 2: Integration with Web Services Page 77

1CRM System 8.6 Developer Guide

action - saved or deleted
when - after or scheduled (see below for details)
workflow - ID of workflow
operation - ID of workflow operation
tracker - see below for details

If the when field contains after, it means that the action is executed immediately after the workflow
was triggered. If this field contains scheduled, it means that the action was configured to be executed
with a delay after the workflow triggers. Note that this type of workflow action is always executed by a
scheduler task, so immediately here means “the next time the scheduler runs after the workflow is
triggered”.

The tracker field can be used by the remote server to check for duplicated actions. If a request to the
remote API fails, 1CRM will retry the request later. There may be rare cases when the remote API
call gets executed correctly, but because of a network error 1CRM does not receive a reply from the
remote API. In this case 1CRM will resend the same request later. The remote API can use the
tracker field to detect and ignore such duplicate requests.

The format of the HTTP request sent to the remote API depends on the request method configured.
The GET method sends data in the query part of URL. The POST method will send the data in the
request body using application/x-www-form-urlencoded content type. The method POST with
JSON body sends the data in the request body using application/json content type.

In our example, 1CRM has the following values to send to the remote API, with the workflow action
set to send HTTP requests to http://www.your-remote-api.com/action :

"module"				:		"Leads"	
"record"				:		"4158ca78-6f11-ac08-3620-5aa7989bfe31"	
"user"						:		"1"	
"source"				:		"workflow"	
"action"				:		"saved"	
"when"						:		"scheduled"	
"workflow"		:		"532457f5-5ed7-b15d-c4b9-5ab471a2cb0d"	
"operation"	:		"4d27b9f7-7a63-bdd3-f545-5ab6fa40b244"	
"tracker"			:		"b7be4be0-5c5c-4af9-6768-5ab6fa492d36"

When using the GET method, 1CRM will send the following request:

GET	/action?module=Leads&record=4158ca78-6f11-
ac08-3620-5aa7989bfe31&user=1&source=workflow&action=saved&when=scheduled&workflo
w=532457f5-5ed7-b15d-c4b9-5ab471a2cb0d&operation=4d27b9f7-7a63-bdd3-
f545-5ab6fa40b244&tracker=b7be4be0-5c5c-4af9-6768-5ab6fa492d36	HTTP/1.1	
Host:	www.your-remote-api.com	
Accept:	*/*	

When using the POST method, 1CRM will send the following request:

POST	/action	HTTP/1.1	
Host:	www.your-remote-api.com	
Accept:	*/*	
Content-Length:	245	
Content-Type:	application/x-www-form-urlencoded	

Section 2: Integration with Web Services Page 78

http://www.your-remote-api.com/action
http://www.your-remote-api.com/
http://www.your-remote-api.com/

1CRM System 8.6 Developer Guide

module=Leads&record=4158ca78-6f11-
ac08-3620-5aa7989bfe31&user=1&source=workflow&action=saved&when=scheduled&workflo
w=532457f5-5ed7-b15d-c4b9-5ab471a2cb0d&operation=4d27b9f7-7a63-bdd3-
f545-5ab6fa40b244&tracker=b7be4be0-5c5c-4af9-6768-5ab6fa492d36	

When using the POST with JSON body method, 1CRM will send the following request:

POST	/action	HTTP/1.1	
Host:	www.your-remote-api.com	
Accept:	*/*	
Content-Type:	application/json	
Content-Length:	283	

{"module":"Leads","record":"4158ca78-6f11-
ac08-3620-5aa7989bfe31","user":"1","source":"workflow","action":"saved","when":"s
cheduled","workflow":"532457f5-5ed7-b15d-
c4b9-5ab471a2cb0d","operation":"4d27b9f7-7a63-bdd3-
f545-5ab6fa40b244","tracker":"b7be4be0-5c5c-4af9-6768-5ab6fa492d36"}	

Section 2: Integration with Web Services Page 79

http://www.your-remote-api.com/

1CRM System 8.6 Developer Guide

3.0 SugarCRM Compatibility
Third party software designed to install on SugarCRM Community or Professional/Enterprise Editions
via the Upgrade Wizard or the Module Loader will need very significant editing to function with
1CRM. From the format of the PHP manifest file to the methods used for defining table models and
views, the module architecture of 1CRM 7.0 and later releases is entirely different from that of
SugarCRM.

Packages will need to be updated for compatibility by a competent PHP software developer, and in
some cases entirely rewritten. 1CRM Systems Corp, via one of our 1CRM Partner organizations, can
assist you with this sort of development work if required.

Section 3: SugarCRM Compatibility Page 80

1CRM System 8.6 Developer Guide

4.0 1CRM Module Development

4.1 Introduction
The process for developing custom modules for 1CRM 7+ is very different compared to previous
versions, due to a set of fundamental changes in the 1CRM base framework. Modules are more self-
contained and their code contains fewer redundancies. A new configuration format is used in place of
various PHP code files, meaning fewer opportunities for uncontrolled fatal errors. HTML templates
are no longer used to define module DetailView or EditView forms, with new layout descriptors
taking their place. Finally, separate model and display descriptor files replace vardefs.php for
defining the structure of real and virtual database columns.

4.2 Configuration Files
The new configuration file format (IAHConfig) is a simple hierarchical format similar to YAML.
Defining arrays of data, primarily character strings, it is easily parsed and written programmatically
and designed to be human-editable as well.

The IAHConfig Format
By default, each line of the file specifies a key in an array. When the key is not followed by a colon
character, the value associated with it is assumed to be another array. Hard tabs are normally used
to indicate depth although a sequence of four spaces is considered equivalent. The first line of the
file generally consists of a PHP snippet which is not interpreted by the configuration system, but
serves to protect the file contents from viewing by end-users. Comments are preceded by a hash (#)
character.

When the key is followed by a colon, the value is represented by either a quoted string or an
unquoted value, which may evaluate to a string or a special value. The subsequent value may also
be written over multiple (indented) lines, in which case the result is obtained by removing the
indentation and trimming the string. Within quoted strings, the backslash character may be used for
C-style character escaping. Special values include integer, float, and boolean literals (true and
false) as well as null. Finally, array literals can be written as special values by using the square
bracket format below.

<?php	return;	/*	no	output	*/	?>	
Key1	
	 Key2	
#	=>	array("Key1"	=>	array("Key2"	=>	array())

Section 4: 1CRM Module Development Page 81

1CRM System 8.6 Developer Guide

Because unquoted values are automatically trimmed, strings having leading or trailing whitespace
need to be quoted. The special key value - (hyphen) represents the next numeric key, equivalent to
setting $result[], and is followed by a simple value or array literal. The special key value -- (double
hyphen) begins a new nested array at the next numeric key, and should be written alone on a line:

IAHConfig files may be easily parsed and written using the ConfigParser and ConfigWriter classes
located in include/config/format/.

String:	test	
Integer:	42	
Float:	3.1416	
Boolean:	true	
Array:	[1,	unquoted,	"test\t\n"]	
Multiline:	
	 A	string	
	 on	multiple	lines.	
#	=>	array("String"	=>	"test",	"Integer"	=>	42,	"Float"	=>	3.1416,	
#	 "Boolean"	=>	true,	"Array"	=>	array(1,	"unquoted",	"test\t\n"),	
#	 "Multiline"	=>	"A	string\non	multiple	lines")

-	Value1	
--	
	 Key:	Value2	
#	=>	array("Value1",	array("Key"	=>	"Value2"))

Section 4: 1CRM Module Development Page 82

1CRM System 8.6 Developer Guide

4.3 Module Directory Structure
Each module directory (subdirectory of modules/) follows a common directory structure. In the root of
the directory, there is expected to be at least one PHP file containing a class deriving SugarBean.
This is the primary bean class. Modules may contain more than one SugarBean class, with additional
classes being more limited in their functionality (they won’t be displayed in the Recently Viewed
menu, cannot be referenced by ref fields, and have other restrictions). Each of these classes is also
mapped to a Model, which describes the database mapping for the class. See Model Descriptors for
details on these files, in particular the bean_file attribute on bean models.

Unlike in previous 1CRM versions, these SugarBean classes are not required for most database
operations. Although the retrieve()/save() pattern may still be used, the preferred method is to
perform insertions and updates using a RowUpdate object for the target record. This method requires
less memory and eliminates the formatting and un-formatting of field values for display (including
numbers, dates, and time values).

Each module directory will also contain several subdirectories:

The majority of these are explained in separate sections. For now, let’s examine the module_info.php
file located in the metadata/ subdirectory. This file is required in order to let the system discover the
primary SugarBean class and to display a tab for the module.

Dashlets This optional directory stores any custom Dashlets (widgets
employed by the Home module) relating to the module.

display This directory contains any Model Display Descriptor files.
See section 4.6 for more information.

ext For code extending existing modules. See section 5.1 for
more information.

language The location for any supporting language files for this
module. See section 4.5 for more information.

metadata Currently, the only file required in this directory is module_info.php,
described below.

models This directory contains any Model Descriptor files. See
section 4.4 for more information.

views This is the location for any Layout Descriptor files. See
section 4.7 for more information.

widgets Custom display widgets may be stored in this optional
directory. See section 4.8 for more information.

Section 4: 1CRM Module Development Page 83

1CRM System 8.6 Developer Guide

Inside the detail array there are 3 required attributes. primary_bean is the name of the primary
model, a bean model descriptor, which will then provide the path to the primary class file. The
tab_visibility attribute defines the display mode for the module tab: normal, indicating that a
module tab should always be shown; hidden, meaning it should never be shown; and manual, if the
tab should be shown only when specifically added to the system tab layout. In most cases this value
should be normal, while supporting modules may use hidden to avoid cluttering the menu system.
The last attribute, default_group, defines the tab group this module tab should be placed under. The
tab may still be placed into another group by an administrator editing the system tab layout. If no
default is provided and the tab visibility is normal, then it will be placed in whichever tab group
contains the Administration module.

For a custom module it may also be desirable to set the icon property. If you do, this should contain
the path to a custom 16x16 icon file for the module. (A good practice can be to place this file at
Modules/NAME/ext/themes/Default/images/NAME.gif.) This path needs to be relative to the
install path, and after adding this property the 1CRM function Admin — Maintenance — Rebuild
Javascript Languages needs to be performed to refresh the cached navigation data.

Sample module_info.php contents for the Contacts module
detail	
	 primary_bean:	Contact	
	 tab_visibility:	normal	
	 default_group:	LBL_TABGROUP_SALES_MARKETING

Section 4: 1CRM Module Development Page 84

1CRM System 8.6 Developer Guide

4.4 Model Descriptors
Previously represented by vardefs.php, in 1CRM 7 model descriptors are split into multiple files
located in the models/ subdirectory of the module directory, with additional system-level model
descriptors are located in include/models/. These are further classified as bean, link, and table
descriptors with each generally representing a single database table. These files are automatically
indexed by the ModelManager class with cached results written to cache/system/model_cache.php,
and their names are expected to be unique within the system. The Database Repair task (under
Administration > Maintenance) is used to update the database definition according to these
descriptors, creating tables, columns and indexes as required.

Of the standard model descriptor types, bean descriptors represent the common case. These are
linked to a SugarBean-derived class, can be referenced by other bean and link descriptors (using
ref fields), and use an id field as the primary index. Next are the link descriptors, which define
tables representing many-to-many relationships between bean records. These tables may contain
additional fields, known as relationship role columns. In order to prevent duplicate records in these
tables, the primary key is usually composed of the two id columns defining the relationship. Finally,
table descriptors map to general-purpose SQL tables with no default behaviour. Operations on these
tables must be defined explicitly and auditing is not supported.

Each file must define a detail section, with properties that vary according to the descriptor type.
These include:

type The descriptor type, also used in the filename prefix.
bean_file In bean descriptors, the path to the SugarBean-derived class file

represented by this model.

primary_key The column or columns used to create the table’s primary
key.

table_name The (unique) name of the table as represented in the SQL
database.

default_order_by The default column and order (ASC/DESC) used in sorting
ListView results.

Section 4: 1CRM Module Development Page 85

1CRM System 8.6 Developer Guide

Various optional flags are available to configure system features for bean-type models:

display_name The column used to represent the displayed name of this record, for
example when pointed to by a ref field or shown on the recently-viewed
menu. Note that this property must be defined in order to properly display
the title on a DetailView form.

The display_name property may also be define a combination of fields,
for example the display name of a Case consists of the case name with
the case number as a prefix:

display_name
 type: prefixed
 fields
 - case_number
 - name

activity_log_enabled Setting this value to true causes changes to records in this module to
be shown in the system activity log (dashlet).

audit_enabled Enables auditing of database updates. Updates to fields also marked
audited will be written to a separate audit table, along with the previous
value, the time of the change, and the user ID performing the update.
The audit table is automatically created during a database repair
operation.

comment A text comment describing the function of the table.
duplicate_merge To enable duplicate merging when a new record request

appears similar to an existing record.
optimistic_locking To enable optimistic locking for updates to this module. This

feature is meant to warn users when others are performing
updates to the same record simultaneously.

importable To allow mass importing of records into this module via the
ImportDB interface. The value may be a string representing
the name of a custom label (language string) for the import
action.

reportable Whether to allow Reports to be created and run against this
model.

unified_search To display this model (if it is the module primary bean) in the system
Unified Search. Fields also marked with unified_search:	true will be
used to automatically filter relevant results.

Section 4: 1CRM Module Development Page 86

1CRM System 8.6 Developer Guide

4.4.1 Business Logic Hooks
Model descriptors may also define a hooks array containing a mapping of function hook definitions to
be invoked when certain actions are performed. A function hook definition is itself an array, with most
hooks defining only a class_function attribute. This is the name of a static class method on the
SugarBean-derived class referred to by this model (the attribute class may be set in order to override
the containing class name). In place of class_function, the attribute function may be used to refer
to a non-class function. In this case the attribute file should contain the path of the file containing
this method (to be included once as needed). The file attribute should also be provided for classes
which are not associated with a 1CRM model, and thus can’t be included automatically.

Logic hooks may also define a required_fields attribute containing an array of field names. Fields
added to this list will be automatically queried before the hook is executed so that their current values
are available to the function.

Several logic hooks are currently supported:

Sample business logic hooks defined by the Cases model

hooks
 new_record
 --
 class_function: init_record
 notify
 --
 class_function: send_notification
 required_fields: [cust_contact_id]

new_record	(
			RowUpdate	&$update,	
			array	$input	
)

This hook is called in order to populate a new row,
both before displaying the EditView form and after
that form has been submitted. It is also executed for
records created from external APIs (SOAP/JSON).
The function may examine request parameters and
update fields accordingly; it is most often used when
creating a new record based on a related record in
another module (in which case the related ID will be
passed as a request parameter).

Section 4: 1CRM Module Development Page 87

1CRM System 8.6 Developer Guide

load_input	(
			RowUpdate	&$update,	
			array	$input,	
			bool	$formatted	
)

This hook is called when user input is being loaded
for either a new record, or a modification to an
existing record. Because this input may come via an
HTTP, SOAP or JSON request, it is not always correct
to look at $_REQUEST (or $_GET or $_POST) for
this information.

load_request	(
			RowUpdate	&$update,	
			array	$req,	
			bool	$ignore_blank	
)

A lower-level hook than load_input, this method may be used
to capture any form input, including fields which do not
correspond with a known (updatable) field from the model, and
uploaded files.

fill_defaults	(
			RowUpdate	&$update	
)

Called when a RowUpdate object is validated (after the standard
validation checks and before saving), this hook should be used
to populate fields which have calculated values, often depending
on the values of other fields. Doing so in a before_save hook is
not always sufficient, as required fields may be flagged as
missing in that case.

before_save	(
			RowUpdate	&$update	
)	
after_save	(
			RowUpdate	&$update	
)

These hooks are executed for every row update. They may be
used as a last chance to enforce class invariants and check user
input, and to manage updates to related resources. The field
updates to be performed may be accessed via the $updates
property of the RowUpdate object.
A before_save hook may throw an IAHActionCompleted
exception to indicate that the record update has been completed
and the default behaviour must be skipped. An IAHActionAbort
exception indicates that certain conditions have not been met
and the record update cannot be completed.

fill_defaults (
 RowUpdate &$update
)

Called as part of the process for saving a record, this
hook is intended to populate required fields which are
not provided by the user, but may otherwise be
determined.

validate	(
			RowUpdate	&$update	
)

The last step when a RowUpdate object is validated before saving.
Additional validation checks may be performed on the field
values, and validation errors added using
$update->addValidationError(‘invalid_value’,	string	

$field_name).

notify	(
			RowUpdate	&$update	
)

This hook is called after a successful save operation in order to
send notification emails or otherwise alert users to the changes.

Section 4: 1CRM Module Development Page 88

1CRM System 8.6 Developer Guide

There are also a special set of logic hooks associated with the User model, used to perform actions
as part of the user’s browsing experience:

before_delete	(
			RowUpdate	&$update	
)	
after_delete	(
			RowUpdate	&$update	
)

These hooks are called when a record is to be deleted (by
setting deleted=1 in the record, not removing it from the table).
Like the before_save hook, the before_delete hook may throw
IAHActionCompleted or IAHActionAbort.

before_add_link	(
			RowUpdate	&$update,	
			string	$link_name	
)	
after_add_link	(
			RowUpdate	&$update,	
			string	$link_name	
)

These hooks are executed when a record is being added or
updated in a link model table. The details of the relationship
data may be accessed via the $link_update property of the
RowUpdate object. This hook is called for the models on both
sides of the relationship.
Like the before_save hook, the before_add_link hook may throw
IAHActionCompleted or IAHActionAbort.

before_remove_link	(
			RowUpdate	&$update,	
			string	$link_name	
)	
after_remove_link	(
			RowUpdate	&$update,	
			string	$link_name	
)

Called when a relationship between two records is being
removed. Like the before_save hook, the before_remove_link
hook may throw IAHActionCompleted or IAHActionAbort.

after_login	(
			string	$user_id,	
			string	$login_type	
)

Executed after a successful login, including logins via
the SOAP or JSON interfaces.

page_init	(
			BasePage	&$page	
)

This hook are executed when a BasePage is
initialized (early in the rendering pipeline for normal
web-based sessions). It can be used to inject global
javascript libraries or CSS styles, for instance.

before_page_render	(
			BasePage	&$page	
)	
after_page_render	(
			BasePage	&$page	
)

These hooks are executed later in the rendering
pipeline for a standard application page, once all
normal global variables have been initialized and
permissions have been checked for the current
action.

Section 4: 1CRM Module Development Page 89

1CRM System 8.6 Developer Guide

4.4.2 Field Descriptors
The fields section of a model descriptor file contains a set of arrays describing the database
columns. This is much like the fields section of earlier vardefs.php files. Each array key must be
unique and represents either the name of the column or a reference to a system-defined field
descriptor (these are listed in section 4.4.3). Properties defined inside the array control the behaviour
of the field. A non-exhaustive list of these properties follows, while other properties are specific to
certain field types.

Section 4: 1CRM Module Development Page 90

1CRM System 8.6 Developer Guide

type The column type, which corresponds indirectly to an SQL
column type. See the table of common field types below.

dbType A value overriding the database column type, which is generally inferred
based on the type value.

vname A reference to a language string in either the module or
application language files representing a label for this field.

vname_list A language string to override vname in the context of list column labels.

audited A flag indicating that updates to this field are logged to the associated audit
table, as long as audit_enabled is set in the model detail descriptor.

charset For varchar-type fields, this property may be set to ‘ascii’ in
order to restrict the input to ANSII characters and reduce the
database storage requirements to one byte per character.

comment A string describing the usage of this field.

decimal_place
s

For float or double-type fields, the number of decimal places to display in
the user interface.

default A default value for the column when none is specified by the user or by one
of the pre-save hooks on the model (fill_defaults or before_save).

detail_link Set to true in order to render the field as a link to the target
record when included in a ListView.

editable Set to false to disable user editing of a field, including on new
records.

id_name For ref-type fields, the name of the corresponding ID field. When not
provided this will default to the name of the ref field with ‘_id’ appended. If
not defined explicitly then the corresponding ID field will be automatically
created.

importable Generally defaulting to true, set this flag to false to hide this field
inside the ImportDB module.

len The length of the corresponding database column in characters.
massupdate A flag to control visibility of this field on the ListView’s mass-

update panel.
reportable Whether to allow make this field available for reports.

Section 4: 1CRM Module Development Page 91

1CRM System 8.6 Developer Guide

4.4.3 System-Level Field Descriptors
These field descriptors may be referenced to include standard field descriptors (each an array
specifying standard properties for the given field) within a model descriptor file. Properties of the
standard field descriptors may be overridden by listing them underneath this key.

4.4.4 Common Field Types

required Marks this field as required, meaning it must contain a non-null
value.

updateable Like editable, disables user updates to the field, but only for existing
records.

unified_search A flag indicating that this field should be added to the default
unified search filter.

width The normal rendering width of the field in characters (if not
overridden by the layout) when shown in a ListView, DetailView
or EditView.

app.id A standard record ID.
app.date_entered A datetime representing the record creation date.

app.date_modified A datetime representing the last modification date.

app.created_by_user The user who created this record (a ref field).

app.assigned_user The user assigned to this record (a ref field).

app.modified_user The user who last modified this record (a ref field).

app.currency A standard currency ref field.

app.exchange_rate A standard exchange rate field.

id A 36-character string field containing a unique, system-
generated identifier (GUID).

varchar A string value.
char A string value, defaulting to ASCII (8-bit) database

representation.

Section 4: 1CRM Module Development Page 92

1CRM System 8.6 Developer Guide

text This field type represents a multi-line text field and is stored in an SQL
text column.

tinyint,	int,	float,	
double,	currency,	
base_currency,	
percentage

Standard numeric field types.

bool A true or false value, usually represented as an SQL tinyint. Fields of
this type are rendered as checkboxes.

date,	time,	datetime Standard date and time field types. These are always stored
in GMT, and shown to the user in their local time zone.

duration A duration field, stored as an integer representing a number
of a minutes.

enum A dropdown list, usually represented as a varchar column and having an
associated options array. Options may also be defined programmatically
by defining an options_function property, referencing a function which
produces the array of options for the selection input.

multienum A set of values chosen from a multi-select list. In the database values are
stored in a single string with ‘^,^’ as the separator between values.

phone A phone number, stored using a varchar column.

email An email address, stored using a varchar column.

url An internet URL, stored using a varchar column.

ref Representing a reference to a record in another model. This field does
not map to a database column itself, but will have an associated ID field
(automatically created, or named by the id_name property). When this
field is queried by adding it to a form or list layout, a link to the related
record is rendered using the target’s display name. Normally a ref field
defines bean_name, representing the name of the target model.
Otherwise, a ref field must define dynamic_module (a column name), in
which case it can target a record in one of multiple modules. See the
Calls or Tasks modules for examples of this usage.

html An HTML field, such as the body of an email template.

item_number A simple string value, but generally rendered using fixed-
width characters. This field type often used to represent
product identifiers and serial numbers, as well as unique
numeric IDs for various record types.

Section 4: 1CRM Module Development Page 93

1CRM System 8.6 Developer Guide

4.4.5 Table Indexes
For improved speed in performing common searches, multiple indexes may be defined on each
model descriptor. These are contained within the indices section. Each entry consists of an array
key representing the unique name for the index, along with an array of properties. For most purposes
the only relevant property is fields, containing an array of column names used to construct the
index. The primary key index is specified automatically (based on the primary_key property in the
detail section of the model) and does not need to be repeated.

4.4.6 Model Links and Relationships
Model link definitions are used to manage one-to-many and many-to-many associations between
records, while one-to-one or many-to-one record linkages are generally represented using ref fields.
These link definitions are most often used as the basis for sub-panels, and are contained in the links
section of the model descriptor file.

module_name A reference to a module name, used for instance when implementing a
multi-ref input (which allows both the related module and ID to be
selected).

file_ref A reference to an uploaded file. When rendered, this field
type will automatically handle uploading and storage of the
associated file.

image_ref Essentially a file_ref field specialized for image-type files.

A sample index definition used by the EmailTemplate model
indices	
	 idx_email_template_name	
	 	 fields	
	 	 	 -	name

Section 4: 1CRM Module Development Page 94

1CRM System 8.6 Developer Guide

Each link must reference a corresponding relationship, which may be defined in the current model
descriptor file or in a separate model descriptor. When defined inside a bean descriptor file
relationship definitions resemble the following (corresponding to the link definitions above).

In the above relationship descriptors, the key property names a field in the current model definition
used to establish the relationship. Matching records in the table defined by the target_bean model
are found by equating its target_key field to the value of key.

Relationship descriptors may also define a role_column and role_value to further restrict the
targeted set of records. This is generally used when the referenced field is a ref field with
dynamic_module defined.

Relationships defined within link model descriptors have slightly different formatting, as seen below.
Note that the relationship shares the name of the link model in this case.

Sample link definitions used by the Account model
links	
	 members	
	 	 relationship:	member_accounts	
	 	 module:	Accounts	
	 	 bean_name:	Account	
	 	 vname:	LBL_MEMBERS	
	 tasks	
	 	 relationship:	account_tasks	
	 	 module:	Tasks	
	 	 bean_name:	Task	
	 	 vname:	LBL_TASKS

Sample relationship definitions used by the Account model
relationships	
	 member_accounts	
	 	 relationship_type:	one-to-many	
	 	 key:	parent_id	
	 	 target_bean:	Account	
	 	 target_key:	id	
	 account_tasks	
	 	 relationship_type:	one-to-many	
	 	 key:	id	
	 	 target_bean:	Task	
	 	 target_key:	parent_id	
	 	 role_column:	parent_type	
	 	 role_value:	Accounts

Section 4: 1CRM Module Development Page 95

1CRM System 8.6 Developer Guide

In this definition, lhs represents the (arbitrary) left-hand side of the relationship and rhs the right.
join_key_lhs and join_key_rhs are fields defined by this link model, while lhs_key is a field in the
lhs_bean model, and rhs_key is a field in the rhs_bean model. You can think of the SQL join
statement as setting lhs_bean.lhs_key	=	join_key_lhs and join_key_rhs	=	rhs_bean.rhs_key.

4.5 Localization
In 1CRM 7, the organization of translatable language strings changed significantly in comparison to
earlier versions. The language/ subdirectory of each module directory is expected to contain at least
two files: lang.en_us.meta.php and lang.en_us.strings.php. The first contains the label for this
module (the label key in the excerpt below), which is automatically collected in the system-wide
$app_strings['moduleList'] array familiar from previous 1CRM versions. This file may also define a
module from which to inherit language strings (inherit_from) – useful in the case of similar modules
which share common strings. This functionality can help to reduce the translation work required and
is also supported by the javascript framework.

Module language strings are listed in the file lang.en_us.strings.php. This is a simple array of key-
value pairs, and should not contain any nested arrays. These strings may be referenced in field
descriptors and in layout descriptors, and may be accessed programmatically using the system
function translate($label,	$module). If module-specific language arrays are to be used, they may
be placed in lang.en_us.lists.php.

A sample relationship definition used by the discounts_products link model
relationships	
	 discounts_products	
	 	 relationship_type:	many-to-many	
	 	 lhs_key:	id	
	 	 lhs_bean:	Product	
	 	 join_key_lhs:	product_id	
	 	 rhs_key:	id	
	 	 rhs_bean:	Discount	
	 	 join_key_rhs:	discount_id

lang.en_us.meta.php from the Invoice module
detail	
	 label:	Invoices	
	 comment:	en_us	language	file	for	Invoice	module	
	 inherit_from:	Quotes

Section 4: 1CRM Module Development Page 96

1CRM System 8.6 Developer Guide

4.6 Model Display Descriptors

In addition to the model descriptor file, most 1CRM model classes will also be associated a display
descriptor file. These are located in the display/ subdirectory of each module. This file is used to
define standard filters for the model as well as any non-database fields and various display-related
settings. Note that all of these settings are optional.

list.default_order_by A field name (with optional ‘ASC’ or ‘DESC’ appended)
representing the default sort order for this model’s ListView,
overriding the default_order_by defined by the model
descriptor.

list.buttons An array of button descriptors representing mass-update
actions on the ListView for this model. Each entry should
generally define a vname property (the label), an icon, and a
perform property containing javascript to submit the mass-
update action (this generally means calling
sListView.sendMassUpdate). These buttons generally map
to mass-update handlers, defined below.

list.massupdate_handlers An array of mass-update handler descriptors. Each entry is
an array defining a few required properties: name, the
unique name of the mass-update action; class, the name of
the class which will perform the action; and file, the path
to the file containing that class. Once the class is loaded,
the static class function listupdate_perform	
(ListMassUpdate	$mu,	string	$perform,	ListFormatter	

&$list_fmt,	ListResult	&$list_result,	$uids) is called
in order to perform the mass-update action.

Section 4: 1CRM Module Development Page 97

1CRM System 8.6 Developer Guide

list.layouts An array of standard ListView layouts for the model, which
will be represented as tabs along the top of the form.
Normally each array key represents the name of the layout,
but this can be overridden by setting the view_name
property. Set the vname property to provide the tab label. An
override_filters array may also be provided in order to
set default values for ListView filters, whether they are
shown on the filter form or not.

An example from the Accounts module, adding a
Customers tab to the ListView form:
list	
				layouts	
								Customers	
												vname:	LBL_CUSTOMERS	
												override_filters	
																is_supplier:	0	
																account_type:	Customer

list.show_favorites Show a favorites column in the ListView and
DetailView, along with a standard filter to display
only favorite records.

edit.quick_create.via_ref_input Allow the user to quick-create new records when
a ref field based on this model is placed on any
standard EditView form.

view.layouts Similar to list.layouts, this property may contain an array
of alternate layouts for the DetailView. Each entry will be
represented as a tab at the top of the standard DetailView
form.

basic_filters A simple list of ListView filter names which are
shown by default in the Browse ListView layout
and in popups.

auto_filters A list of filter names which are to be applied
automatically when included in the HTTP request,
even when not placed on the current filter form.

filters See the next section for more information on
module filters.

Section 4: 1CRM Module Development Page 98

1CRM System 8.6 Developer Guide

4.6.1 ListView Filter Definitions

Each entry in the filters section of the display descriptor file defines a separate ListView filter. It is
not generally necessary to define filters for existing database fields; instead these filter definitions are
used to create more complex restrictions on the ListView results while providing a simple external
interface.

There are a few supported filter types. The most basic is the flag filter, which is presented as a
simple checkbox on the filter form. In each case the vname defines the displayed name of the filter,
which may be translated. An example definition from the Accounts module:

In this case ‘nonzero’ defines a flag filter, off by default, which restricts the ListView results to those
with a non-zero value for the balance column. When the user checks the button labeled ‘Non-Zero
Balance Only’, the filter becomes active. Normally flag filters are ignored unless the filter value is set
to true, but the negate_flag property may also be set in order to reverse this behavior. To test this
particular filter, one could pass HTTP parameters nonzero=1&query=1 in the URI for the ListView
form.

The next major filter type is the section filter. This is normally rendered as a dropdown list, and
presents an set of alternate filter actions to be selected between. An example from the Users module:

fields A set of field descriptors, exactly like the field
descriptors in the model descriptor file but
assumed to be non-database fields (generally
widgets or other virtual fields like addresses).

hooks A set of display hooks associated with the model.
These are explained in section 4.6.3.

widgets Definitions for custom display widgets. See
section 4.8 for more information.

filters	
				nonzero	
								type:	flag	
								default_value:	false	
								vname:	LBL_NONZERO_BALANCE	
								operator:	non_zero	
								field:	balance

Section 4: 1CRM Module Development Page 99

1CRM System 8.6 Developer Guide

In this example the options for the dropdown list are provided by a callback (options_function), but
they could also be written in place using the options property, as with an enum field definition.
Normally the behaviour of a section filter is simply to restrict the set of records by setting the
database column field equal to the filter value, but in this case a custom filter clause generator is
used to generate the desired expression.

Most basic field types can be automatically used as filters, including varchar, date, time, ref, and the
various numeric fields. Often the rendering of filter inputs will vary from that on a standard EditView in
order to allow for more flexibility.

4.6.2 Display Hooks

In addition to the model hooks which are generally associated with RowUpdate objects, 1CRM
supports a set of display hooks which are associated with form generator objects.

filters	
				status	
								type:	section	
								field:	status	
								vname:	LBL_STATUS	
								options_function:	[User,	get_status_options]	
								default_value:	NotInactive	
								filter_clause_source:	[User,	get_search_status_where]

view	(
				StandardDetailManager	$m	
)

Executed after a DetailView form has been initialized but
before it is rendered.

edit	(
				StandardDetailManager	$m	
)

Executed after an EditView form has been initialized but
before it is rendered.

after_edit	(
				StandardDetailManager	$m	
)

Executed after a successful update is performed to a record
via an EditView form or Delete button.

before_subpanel_create	(
				StandardDetailManager	$m,	
				&$stop)

Called when a new record has been created by the user and
is about to be added to a subpanel on the parent record.
$stop may be set to a true value in order to prevent the
action.

after_subpanel_create	(
				StandardDetailManager	$m	
)

Called after a new record has been saved by a user and
added to a subpanel on the parent record.

Section 4: 1CRM Module Development Page
100

1CRM System 8.6 Developer Guide

4.7 Layout Descriptors
The use of HTML templates in 1CRM 7 is strongly discouraged in favour of the new form generation
system. DetailView and EditView forms are now rendered by the StandardDetailManager class (in
include/DetailView). ListViews are rendered by the ListViewManager and ListFormatter classes (in
include/ListView). The layout templates for all actions are located in the views/ module
subdirectories and prefixed with the relevant action name. Custom overrides for layout templates (as
generated by the layout editor) are stored in custom/modules/MODULE/new_views/.

Each layout descriptor begins with a detail array defining the layout type (which should generally
equal the prefix on the filename). Certain layouts including view and edit may also define a title,
representing a default title to be used at the top of the form. Further metadata may also be contained
in this header. Following this is the layout array, which contains the details of the form layout.

Layout descriptors can be grouped into two basic formats. The list, popup and subpanel layouts
define a columns array underneath layout, containing an ordered list of column descriptors. A column
descriptor may consist of a string referencing a field in the model, or an array. If an array, that array
should generally define a field key, again referencing a field in the model. Using an array also
allows the customization of properties like width (an integer representing the column width in

view.Standard.php The DetailView form layout. Other layouts named as view.*.php
may be accessed using specific values for the layout request
parameter (in particular when using a tabbed form layout).

edit.Standard.php The standard EditView form layout.
list.Standard.php The standard ListView column layout. Other layouts named as

list.*.php may be made accessible by listing them in the Model
Display Metadata.

popup.Standard.php The standard layout for a Popup ListView (shown for example
when the popup button on a ref input field is used). If not
present then list.Standard.php is used instead.

subpanel.Standard.php The standard sub-panel layout used for this module. If not
present, then list.Standard.php will be used to generate the
sub-panel instead.

search.Standard.php The search form layout used on the ‘Quick Filter’
module ListView.

additional.Standard.php The DetailView-style form layout used in the
‘additional details’ popup generated on various
ListViews.

Section 4: 1CRM Module Development Page 101

1CRM System 8.6 Developer Guide

characters) and vname (an alternate column label). Array column descriptors may also define
add_fields, another array of field names to be added on subsequent lines within each column entry.

In this example the display of the number additional column field is customized using the list_format
and list_position options. The first, list_position, may be set to prefix or suffix, in order to
display the value either before or after the primary field value without an additional line break. The
list_format property defines how the value is stylized: separate adds a colon (possibly language
dependent) character between the two values; parenth wraps the value in parentheses; brackets
wraps it in square brackets; and hyphen adds a hyphen character as a separator. This example would
be formatted as one line in the form “number: name” (possibly wrapping onto multiple lines for long
values).

The layout descriptors for view and edit layouts follow a separate common format. The primary entry
within the layout array is sections, which defines a list of top-level form sections.

Each sections entry is an array. Start by defining a unique id for the section. This may be used in
javascript to obtain a reference to the containing element. Next, the vname (a title header for the
section) may be provided. For a view or edit layout, the default number of layout columns is 2, but
this may be overridden by setting the columns attribute. For search layouts an appropriate number of
columns is normally decided based on the number of fields to be rendered.

Field references are then provided in the elements array within the sections entry. When the form is
rendered, these are generally presented as a pair of table cells, one for the label and one for the
representation of the field (which will vary depending on whether the field is editable). Each entry in
elements may be either a string, for a simple field reference, or an array for more complicated cases.
If an array is used then various properties may be overridden, including the colspan for this field, the
vname (field label), and some field type-specific properties. Setting a custom value for the colspan is
demonstrated by the description field in the sample code below.

A sample module list layout with two columns
detail	
	 type:	list	
layout	
				columns	
								--	
												field:	name	
												add_fields	
																--	
																				field:	number	
																				list_position:	prefix	
																				list_format:	separate	
												width:	60	
								-	assigned_user

Section 4: 1CRM Module Development Page
102

1CRM System 8.6 Developer Guide

For view layouts, it often makes sense to define a list of sub-panels following the form sections.
These are entered in the subpanels array, a child of layout. Each entry here references an entry in
the links section of the model descriptor (see Model Links and Relationships). The entry may be a
simple string naming the link descriptor, or an array if additional properties of the subpanel are to be
customized (including the vname).

In both view and edit layouts it is also possible to define custom form buttons. These are entered in
the form_buttons array, also child of layout. Each entry should have a unique key representing the
name of the button. It should define a vname (button label), may define a custom button icon, and can
specify async:	false if the default behaviour of performing a partial page load is not desired. The
params attribute defines a list of properties to be overridden in the resulting HTTP request. If more
complex behaviour is required, a custom javascript handler may be provided in an perform attribute.

A sample module view (DetailView) layout
detail	
				type:	view	
				title:	LBL_MODULE_TITLE	
layout	
	 sections	
	 	 --	
	 	 	 id:	main	
	 	 	 elements	
	 	 	 	 -	name	
	 	 	 	 -	type	
	 	 	 	 -	
	 	 	 	 -	date_modified	
	 	 	 	 -	assigned_user	
	 	 	 	 -	date_entered	
	 	 	 	 --	
	 	 	 	 	 name:	description	
	 	 	 	 	 colspan:	2	
				subpanels	
								-	accounts	
								-	contacts

Section 4: 1CRM Module Development Page
103

1CRM System 8.6 Developer Guide

Because the classic DetailView.php, EditView.php, Save.php and Delete.php files are no longer
present, custom behaviours when displaying, creating and updating records should be specified
within model hooks. See the section on Business Logic Hooks for more information.

4.8 Display Widgets
It will often occur in custom extensions to 1CRM that there is a need to generate HTML outside of the
normal HTML form generator. In these cases, and indeed for many cases within the 1CRM system,
display widgets are used to encapsulate the rendering and processing logic for custom buttons, form
fields, and form sections. These widgets may then be embedded in ListView, DetailView and
EditView forms.

Application-level widgets are defined in the system file include/config/display/
display.app_widgets.php. For widgets which are specific to a single module or which are to be
packaged as part of an extension, the widgets section of a display descriptor file may be used
instead. Widget definitions simply register the widget with the system, along with a unique name, its
basic type, and the path to the file containing it:

Defining a custom form button
#	...	
layout	
						form_buttons	
	 	 pdf	
	 	 	 vname:	LBL_PDF_BUTTON_LABEL	
	 	 	 icon:	icon-print	
	 	 	 params	
	 	 	 	 action:	PDF	
	 	 	 async:	false	
	 sections	
													#	...

Sample widget definitions

widgets	
				PdfButton	
								type:	form_button	
								path:	include/layout/widgets/PdfButton.php	
				RunIntervalInput	
								type:	field	
								path:	include/layout/widgets/RunIntervalInput.php	
				SocialAccountsWidget	
								type:	section	
								path:	modules/SocialAccounts/widgets/SocialAccountsWidget.php

Section 4: 1CRM Module Development Page
104

1CRM System 8.6 Developer Guide

Widgets of type form_button must inherit from the FormButton class (include/layout/forms/
FormButton.php). They can be included in the form_buttons section of a DetailView or EditView
layout by simply setting the widget property of the button definition to the name of the widget.

Widgets of type field can be included either in a ListView layout as a column, or in a DetailView or
EditView form as a single cell with an associated label. They must inherit from FormField (include/
layout/forms/FormField.php) or from a subclass.

The last type, section widgets represent an entire table in an DetailView or EditView form. Examples
include the social accounts panel on an Account, and the line items editor used in Quotes or
Invoices. These widgets must inherit from FormSection (include/layout/forms/FormSection.php) or
from a subclass such as FormTableSection.

Each widget generally overrides the renderHtml(HtmlFormGenerator	&$gen,	RowResult	
&$row_result,	array	$parents,	array	$context) method in order to perform its rendering. For
field-type widgets which may be included in a ListView, it may be desirable to override the
renderListCell(ListFormatter	&$fmt,	ListResult	&$result,	$row_id,	$list_params=null)
method for an alternate rendering format. If certain database fields are required in order to produce
the result, then they should be returned in an array from a custom getRequiredFields() method.

When included in an EditView form, widgets are also given a chance to respond to certain form
events. It may be desirable to override these FormElement methods in order to perform additional
processing within the widget class, as opposed to setting separate hooks on the model itself:
				function	loadUpdateRequest(RowUpdate	&$update,	array	$input)	
				function	validateInput(RowUpdate	&$update)	
				function	beforeUpdate(RowUpdate	&$update)	
				function	afterUpdate(RowUpdate	&$update)	

Section 4: 1CRM Module Development Page
105

1CRM System 8.6 Developer Guide

5.0 Extending System Modules
1CRM provides upgrade-safe methods to extend existing modules.

5.1 The ext/ subdirectory
Each 1CRM module may contain an ext/ subdirectory providing extensions to the model definition,
layouts, or language of another module, as well as similar extensions to application-level
configuration files and the 1CRM Administration module. In practice the ext/ subdirectory is not
employed by system modules, and is used exclusively by custom modules. These extensions are
indexed by the ExtManager configuration class (include/config/ExtManager.php) and cached in
cache/system/ext_cache.php in order to avoid scanning every subdirectory on each page load.

In general, files located under these directories are parsed by the configuration manager after the
base system configuration files (and after the configuration files of any module being extended), but
before any site-specific customizations located under the custom/	subdirectory. This means that
custom layouts saved by the layout editor and modifications to the module or application language
saved by the dropdown editor will override or extend module extensions.

For the purpose of this document we will assume the existence of a custom module named
TestModule which performs several (arbitrary) extensions to the system and to standard system
modules. For testing purposes you may wish to create this module under your development system’s
modules/ directory. Be sure to delete the extension cache file along with any related caches (model,
display, or language) in order to see any changes. When a custom module is installed using the
Upgrade Wizard these caches are automatically refreshed.

5.1.1 System Language Extensions
The standard system language files under include/language/ may be easily extended by creating
corresponding configuration extension files under the ext/include/language/ subdirectory of any
module. In particular, the system language strings file may be extended by ext/include/language/
lang.en_us.strings.php, and the language lists (dropdowns) file by ext/include/language/
lang.en_us.lists.php. In this example we are making changes to the dropdown list options in the
English language file. Any dropdown options not defined by other language packs will be
automatically inherited when those language packs are in use.

Section 5: Extending System Modules Page
106

1CRM System 8.6 Developer Guide

5.1.2 Model and Display Extensions
For any existing module located in modules/M/ (for instance), a custom module may choose to define
override files located under its own ext/modules/M/ subdirectory. At this time module extensions are
limited to model, display, language, and layout modifications.

These extensions all follow the same pattern. They are parsed directly by the configuration manager
and operate on the tree structure resulting from existing configuration files.

Extending a model descriptor for an existing module is straightforward. In this example we add a new
field to the Accounts module. We use the vname_module field parameter so that the language string
may be defined in the language/ directory of our custom module. Note that the Database Repair task
must be run in order to create the corresponding column in the database:

Similarly, we can extend the display model of the Account model. In this example we add a new filter,
and automatically place it on the Browse layout of the Accounts ListView by adding a new entry to
basic_filters.

modules/TestModule/ext/include/language/lang.en_us.lists.php

<?php	return;	/*	no	output	*/	?>	

#	create	a	new	dropdown	options	list	
test_dropdown_dom	
				first:	First	Option	
				second:	Second	Option	

#	add	an	option	to	an	existing	list	
account_type_dom	
				Nemesis:	Nemesis	

#	replace	an	existing	options	list	using	@clear	to	erase	any	previous	entries	
terms_dom	
				@clear	
				Now:	Now	
				Never:	Never

modules/TestModule/ext/modules/models/bean.Account.php

<?php	return;	/*	no	output	*/	?>	

fields	
				test_duration	
								type:	duration	
								vname:	LBL_TEST_DURATION	
								vname_module:	TestModule

Section 5: Extending System Modules Page
107

1CRM System 8.6 Developer Guide

5.1.3 Module Layout Extensions

There are two methods to extend module layouts. Existing layouts for a module M may be modified by
creating a corresponding file under the ext/modules/M/views/ subdirectory of the custom module,
while new layouts and replacements for existing layouts in said module may be added to ext/
modules/M/new_views/.

Replacement views are no different from normal layout files, but view extensions may use additional
methods in order to place fields at the correct location within an existing layout. Under the layout
property, view extensions may define the ext_elements property in order to list layout modifications
with respect to existing fields in the layout. These modifications are able to add new fields, remove
existing fields, and replace existing fields by new content. Modifications are made relative to existing
fields, which must be named, and must have been previously placed within the layout. Each entry in
ext_elements may define either a name (for a single field), or an elements array. It must define one of
the properties after, before, replace, or remove.

In this example we update the standard Accounts layout by adding our new custom field (defined in
section 5.1.2), then swapping two existing fields (website and email1).

modules/TestModule/ext/modules/display/display.Account.php

<?php	return;	/*	no	output	*/	?>	

basic_filters	
				only_customers	
filters	
				only_customers	
								type:	flag	
								vname:	LBL_ONLY_CUSTOMERS	
								vname_module:	TestModule	
								field:	account_type	
								value:	Customer

Section 5: Extending System Modules Page
108

1CRM System 8.6 Developer Guide

Layout extensions may also add or remove subpanels using a similar method, via the ext_subpanels
property. In this example we add the cases subpanel to the Sales layout for the Accounts module,
directly after the opportunities subpanel. Note that each subpanel must refer to an existing link
definition in the corresponding model – to add a new subpanel, a new link definition must also be
added using the model extension method outlined in section 5.1.2. Each entry in ext_subpanels may
define a before or after property; otherwise the new subpanel is added to the end of the list.

5.1.4 Extending the Administration Module
The Administration index page may be easily updated by custom modules. By simply adding files
named as ext/modules/Administration/administration.Custom.php (the Custom part is arbitrary),
additional entries may be added to the $admin_group_header array defined in modules/
Administration/index.php. Each of these files is included and parsed as normal PHP code.

In this example we add a new entry to the first group of links. Note that modules/TestModule/
Configure.php must be created separately, and must be added to the web_actions section of
TestModule’s module information file (under metadata/) in order to be accessed.

modules/TestModule/ext/modules/Accounts/views/view.Standard.php

<?php	return;	/*	no	output	*/	?>	

layout	
				ext_elements	
								#	add	our	custom	test_duration	field	after	‘name’	
								--	
												after:	name	
												name:	test_duration	
								#	remove	the	email1	field	
								--	
												remove:	email1	
								#	replace	the	website	field	with	a	pair	of	fields,	email1	and	website	
								--	
												replace:	website	
												elements	
																-	email1	
																-	website

modules/TestModule/ext/modules/Accounts/views/view.Sales.php

<?php	return;	/*	no	output	*/	?>	

layout	
				ext_subpanels	
								#	add	the	standard	cases	subpanel	after	the	opportunities	subpanel	
								--	
												after:	opportunities	
												name:	cases

Section 5: Extending System Modules Page
109

1CRM System 8.6 Developer Guide

modules/TestModule/ext/modules/Administration/administration.Custom.php

<?php	
$admin_group_header[0][3]['testmodule']	=	array(
				'Administration',	#	the	icon	
				array('LBL_TESTMODULE_CONFIG',	'TestModule'),	#	the	title	
				array('LBL_TESTMODULE_CONFIG_DESC',	'TestModule'),	#	the	description	
				'./index.php?module=TestModule&action=Configure')	
);	
?>

Section 5: Extending System Modules Page 110

1CRM System 8.6 Developer Guide

6.0 Debugging Methods

6.1 Application Settings
When developing it can be helpful to enable one or more settings in the 1CRM configuration. Some
of these will have UI equivalents in the Configurator module, but most are hidden and must be added
manually to the application config file, include/config/local_config.php. These settings are
intended for temporary debugging or on private development sites only, as they may pose a security
risk or performance overhead on public sites.

cache.disabled: Disable the external memory cache (such as APC) if any has been detected.

site.allow_debug:	When this flag is enabled, ListViews and DetailView forms may have additional
debugging information shown by adding &debug=1 to the page URI. This includes printing the
generated SQL queries.

site.performance.calculate_response_time: When enabled, 1CRM calculates and displays the
time required to render the current page in the footer.

site.performance.show_page_resources: Show the number of PHP files included as well as statistics
on the external cache.

site.performance.show_memory_usage: Show the amount of memory used in preparing the page.

site.performance.log_all_queries: Log all database queries performed during the generation of
the page to sql.log, along with the time required for each.

site.performance.suppress_display_errors: Normally, 1CRM disables the PHP configuration
setting display_errors during initialization. In order to display PHP errors as they arise, set this value
to false.
site.performance.force_display_errors: Set this value to true in order to display all PHP errors
and notices. This has the same effect as error_reporting(E_ALL);	ini_set(‘display_errors’,	1).
Note that syntax errors raised before system PHP files are included may still result in a blank page,
depending on the PHP configuration.

site.performance.suppress_deprecation_warnings,	site.performance.suppress_strict_warnings:
Normally 1CRM suppresses any PHP notices of type E_DEPRECATED or E_STRICT. Set these
flags to false in order to log or display them.

site.log.detail_errors,	site.log.detail_internal_errors:	When a PHP exception is raised
during page rendering 1CRM will display a simple error message. In order to show a stack trace of
the exception instead, enable these settings. detail_internal_errors is required in order to display
exceptions subclassing IAHInternalError, as these are considered more sensitive.

Section 6: Debugging Methods Page 111

1CRM System 8.6 Developer Guide

site.js_custom_version: Set this property to a different value (generally an incrementing integer) in
order to override any javascript caching on the client or server side.

layout.jsmin_enabled: Set this value to false in order to disable the built-in javascript caching, which
causes javascript files to be minified and loaded via jsmin.php.

layout.show_validate_button: This setting enables a Validate setting on all EditView forms, which may be
used to check record pre-save conditions and display a detailed report of any issues discovered.

json.log_level,	soap.log_level: Set these values to a custom error level (info, warn, error, or fatal)
in order to log details of all requests to the given external interface (SOAP or JSON) to the
application log file.

6.2 Utility Functions

AppConfig::current_user_id() Fetch the ID of the current user.

AppConfig::setting (
 $name, $default=null,
 $standard=false)

Fetch a setting from the application config, returning
$default if it is not defined. Pass $standard to return
the application default for a setting, ignoring any
custom setting.

$log->info ($msg)
$log->warn ($msg)
$log->error ($msg)
$log->fatal ($msg)

Write a custom message to the 1CRM
system log file. Note that if the log level is
below the minimum (adjustable on the
System Settings page) then it will be ignored.

pr2	(
			$message,	$title=null,	
			$wrap=false,	$hide=false,	
			$escape=true)

Use this function to quickly output debugging
information. Arrays and objects are automatically
formatted to be more legible. Word wrapping is
enabled via the $wrap parameter, and the output may
be shown in a more compact format by setting the
$hide parameter. The $escape parameter (default true)
escapes any HTML characters in the message.

tr2	(
			$format=false,	$title=null,	
			$html=true,	$hide=false)

This function can be used to quickly print a formatted
stack trace and output via the pr2 function. In order to
return the output instead of printing it, pass the format
parameter.

prq	(
			$query,	$title=null,	
			$hide=false)

Quickly format an SQL query with syntax highlighting
and output it via the pr2 function.

Section 6: Debugging Methods Page 112

1CRM System 8.6 Developer Guide

Appendix A - Standard Icons
In addition to the theme icons located in each theme’s images/ subdirectory, which are used primary
to identify different modules, 1CRM defines a standard set of icons for common actions. When
adding buttons and similar UI elements to a layout, it is generally preferable to choose from this set
of icons when possible. Icons are rendered by creating a div element of class input-icon and adding
the specific class (for example <div	class="input-icon	icon-accept"></div>). The following table
summarized these icons and their intended uses.

icon-add Create a new record

icon-accept Save changes to a record or confirm another action

icon-action For a standard ‘tools’-type menu, shown as a gear icon

icon-cancel Return from an action without committing any changes

icon-calendar Used by date and datetime-type fields

icon-changelog For the change log (audit log) of a particular module

icon-convert Convert a record, generally by creating a new record in a separate
module

icon-close Close the current form or window

icon-delete Delete a record

icon-duplicate Duplicate a record

icon-edit Edit a record

icon-editlayout Edit a standard form layout

icon-editlist Edit a ListView layout

icon-email Create a new email or link to the Emails module

icon-exchangerate For actions relating to a record’s exchange rate

icon-expand Expand a record, subpanel, or part of a record

icon-export Export a record or set of records

icon-filter Add a filter to a ListView or other object

icon-help For quick help tips or links to other documentation

icon-layout To identify form layouts

icon-note For creating related Note objects or linking to the Note modules

Appendix A: Standard Icons Page 113

1CRM System 8.6 Developer Guide

Among these standard icons there are also icons intended for inline use within text or for navigation
purposes. These may not always be the correct size for embedding in a standard form button.

icon-print Prepare the current record or set of records for printing

icon-reports Used by the Reports tab on each relevant ListView

icon-return Return to the previous step or action

icon_search Search for a record

icon-send Send an email or other notification

icon-skype For integration with the Skype messaging system

icon-sortlist To adjust the sort method of a particular list

icon-sources For adjusting related sources on a ListView

icon-star Used to indicate Favorite records

icon-recur For recurring events or scheduled items

icon-teams For team restrictions and other links to the SecurityGroups module

icon-time For time-type fields

icon-user Used to represent a single, non-administrative user

icon-users Used to represent a mixed group of users

icon-adminuser Used to represent an administrative user

icon-view Show details on a selected record

icon-info Show quick information on a record

icon-popup Indicates a button which produces a popup window

icon-up
icon-down
icon-left
icon-right

Large arrow icons, generally used when moving
content within a container. For example, when moving
line items within a Quote

icon-prev
icon-next
icon-start
icon-end
icon-dprev
icon-dnext

Navigation arrows, used to move between records or
pages of records

Appendix A: Standard Icons Page 114

1CRM System 8.6 Developer Guide

icon-ledgrey	
icon-ledgreen	
icon-ledred	
icon-ledyellow	
icon-ledviolet	
icon-ledblue	
icon-ledorange

Standard LED-type indicators in different colors

icon-temail	
icon-tlink	
icon-tphone

Small type indicators for links to email addresses,
external web addresses, and phone numbers
respectively

Appendix A: Standard Icons Page 115

1CRM System 8.6 Developer Guide

Appendix B - High-Level Design

Appendix B: High-Level Design Page 116

Appendix B: High-Level Design Page 117

1CRM DEVELOPER GUIDE

A Comprehensive Guide to Developing

Customizations and Extensions for 1CRM

